Evolution and Reactivity of Active Oxygen Species on sp2@sp3 Core-Shell Carbon for the Oxidative Dehydrogenation Reaction

被引:28
作者
Sun, Xiaoyan [1 ]
Wang, Rui [2 ]
Zhang, Bingsen [1 ]
Huang, Rui [1 ]
Huang, Xing [3 ]
Su, Dang Sheng [1 ]
Chen, Tong [4 ]
Miao, Changxi [4 ]
Yang, Weimin [4 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
[2] Natl Inst Clean & Low Carbon Energy, Beijing 102209, Peoples R China
[3] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
[4] Sinopec Shanghai Res Inst Petrochem Technol, Shanghai 201208, Peoples R China
关键词
alkanes; carbon; dehydrogenation; nanostructures; oxygen; ONION-LIKE CARBON; SURFACE-CHEMISTRY; NANODIAMOND GRAPHITIZATION; FUNCTIONAL-GROUPS; N-BUTANE; NANOTUBES; ETHYLBENZENE; CATALYSTS; STYRENE; DIAMOND;
D O I
10.1002/cctc.201402097
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Different sp(2)@sp(3) core-shell structures are obtained on nano-diamond by using annealing treatment at increasingly higher temperatures. The resulting nanocarbons can serve as model catalysts to investigate the structural effect on the evolution and chemical nature of oxygen functional groups for oxidative dehydrogenation reactions. We studied in situ reactions and characterization data and found that the initial existence of oxygen-containing groups on a catalyst surface had a low contribution to the catalytic performance. The active oxygen species can be generated promptly in situ by the chemisorption of O-2 under the reaction conditions and involved in catalytic dehydrogenation process following a redox mechanism. For different hybridized nanostructures, the same types of generated active oxygen groups show different catalytic capabilities, which can be regulated by the sp(2)-hybridized carbon fraction of nanodiamond. The ketonic carbonyl groups formed on graphitic onion-like carbon surface are more active and can improve the selectivity to alkenes significantly compared with the initial nanodiamond and traditional carbon nanotubes.
引用
收藏
页码:2270 / 2275
页数:6
相关论文
共 35 条
  • [1] The structure of diamond nanoclusters
    Aleksenskii, AE
    Baidakova, MV
    Vul', AY
    Siklitskii, VI
    [J]. PHYSICS OF THE SOLID STATE, 1999, 41 (04) : 668 - 671
  • [2] [Anonymous], ANGEW CHEM
  • [3] [Anonymous], 2011, ANGEW CHEM
  • [4] Bandosz T.J., 2008, CARBON MAT CATALYSIS, P45, DOI DOI 10.1002/9780470403709.CH2
  • [5] Surface oxides on carbon and their analysis: a critical assessment
    Boehm, HP
    [J]. CARBON, 2002, 40 (02) : 145 - 149
  • [6] The thermal stability of nanodiamond surface groups and onset of nanodiamond graphitization
    Butenko, Yu. V.
    Kuznetsov, V. L.
    Paukshtis, E. A.
    Stadnichenko, A. I.
    Mazov, I. N.
    Moseenkov, S. I.
    Boronin, A. I.
    Kosheev, S. V.
    [J]. FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2006, 14 (2-3) : 557 - 564
  • [7] Influence of the microstructure of carbon nanotubes on the oxidative dehydrogenation of ethylbenzene to styrene
    Delgado, J. J.
    Chen, X.
    Tessonnier, J. P.
    Schuster, M. E.
    Del Rio, E.
    Schloegl, R.
    Su, D. S.
    [J]. CATALYSIS TODAY, 2010, 150 (1-2) : 49 - 54
  • [8] Dreyer D.R., 2010, Angewandte Chemie International Edition, V49, P6813, DOI [DOI 10.1002/ANGE.201002160, DOI 10.1002/ANIE.201002160]
  • [9] Graphene Oxide: A Convenient Carbocatalyst for Facilitating Oxidation and Hydration Reactions
    Dreyer, Daniel R.
    Jia, Hong-Peng
    Bielawski, Christopher W.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (38) : 6813 - 6816
  • [10] Modification of the surface chemistry of activated carbons
    Figueiredo, JL
    Pereira, MFR
    Freitas, MMA
    Orfao, JJM
    [J]. CARBON, 1999, 37 (09) : 1379 - 1389