Evolutionary history of quorum-sensing systems in bacteria

被引:127
作者
Lerat, E [1 ]
Moran, NA [1 ]
机构
[1] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA
关键词
quorum-sensing; lateral gene transfer; evolution; gene; duplication; gene family; phylogenetics;
D O I
10.1093/molbev/msh097
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Communication among bacterial cells through quorum-sensing QS) systems is used to regulate ecologically and medically important traits, including virulence to hosts. QS is widespread in bacteria; it has been demonstrated experimentally in diverse phylogenetic groups, and homologs to the implicated genes have been discovered in a large proportion of sequenced bacterial genomes. The widespread distribution of the underlying gene families (LuxI/R and LuxS) raises the questions of how often QS genes have been transferred among bacterial lineages and the extent to which genes in the same QS system exchange partners or coevolve. Phylogenetic analyses of the relevant gene families show that the genes annotated as LuxI/R inducer and receptor elements comprise two families with virtually no homology between them and with one family restricted to the gamma-Proteobacteria and the other more widely distributed. Within bacterial phyla, trees for the LuxS and the two LuxI/R families show broad agreement with the ribosomal RNA tree, suggesting that these systems have been continually present during the evolution of groups such as the Proteobacteria and the Firmicutes. However, lateral transfer can be inferred for some genes (e.g., from Firmicutes to some distantly related lineages for LuxS). In general, the inducer/receptor elements in the LuxI/R systems have evolved together with little exchange of partners, although loss or replacement of partners has occurred in several lineages of gamma-Proteobacteria, the group for which sampling is most intensive in current databases. For instance, in Pseudomonas aeruginosa, a transferred QS system has been incorporated into the pathway of a native one. Gene phylogenies for the main LuxI/R family in Pseudomonas species imply a complex history of lateral transfer, ancestral duplication, and gene loss within the genus.
引用
收藏
页码:903 / 913
页数:11
相关论文
共 39 条
[1]   Salmonella typhimurium encodes an SdiA homolog, a putative quorum sensor of the LuxR family, that regulates genes on the virulence plasmid [J].
Ahmer, BMM ;
van Reeuwijk, J ;
Timmers, CD ;
Valentine, PJ ;
Heffron, F .
JOURNAL OF BACTERIOLOGY, 1998, 180 (05) :1185-1193
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   Quorum sensing in the plant pathogen Erwinia carotovora subsp carotovora:: The role of expREcc [J].
Andersson, RA ;
Eriksson, ARB ;
Heikinheimo, R ;
Mäe, A ;
Pirhonen, M ;
Koiv, V ;
Hyytiäinen, H ;
Tuikkala, A ;
Palva, ET .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2000, 13 (04) :384-393
[4]   N-(3-OXOHEXANOYL)-L-HOMOSERINE LACTONE REGULATES CARBAPENEM ANTIBIOTIC PRODUCTION IN ERWINIA-CAROTOVORA [J].
BAINTON, NJ ;
STEAD, P ;
CHHABRA, SR ;
BYCROFT, BW ;
SALMOND, GPC ;
STEWART, GSAB ;
WILLIAMS, P .
BIOCHEMICAL JOURNAL, 1992, 288 :997-1004
[5]   INTERCELLULAR SIGNALING IN VIBRIO-HARVEYI - SEQUENCE AND FUNCTION OF GENES REGULATING EXPRESSION OF LUMINESCENCE [J].
BASSLER, BL ;
WRIGHT, M ;
SHOWALTER, RE ;
SILVERMAN, MR .
MOLECULAR MICROBIOLOGY, 1993, 9 (04) :773-786
[6]   MULTIPLE SIGNALING SYSTEMS CONTROLLING EXPRESSION OF LUMINESCENCE IN VIBRIO-HARVEYI - SEQUENCE AND FUNCTION OF GENES ENCODING A 2ND SENSORY PATHWAY [J].
BASSLER, BL ;
WRIGHT, M ;
SILVERMAN, MR .
MOLECULAR MICROBIOLOGY, 1994, 13 (02) :273-286
[7]  
BENSON DA, 2002, NUCLEIC ACIDS RES, V25, P3389
[8]   Whole-genome comparative analysis of three phytopathogenic Xylella fastidiosa strains [J].
Bhattacharyya, A ;
Stilwagen, S ;
Ivanova, N ;
D'Souza, M ;
Bernal, A ;
Lykidis, A ;
Kapatral, V ;
Anderson, L ;
Larsen, N ;
Los, T ;
Reznik, G ;
Selkov, E ;
Walunas, TL ;
Feil, H ;
Feil, WS ;
Purcell, A ;
Lassez, JL ;
Hawkins, TL ;
Haselkorn, R ;
Overbeek, R ;
Predki, PF ;
Kyrpides, NC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (19) :12403-12408
[9]   The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp lactis IL1403 [J].
Bolotin, A ;
Wincker, P ;
Mauger, S ;
Jaillon, O ;
Malarme, K ;
Weissenbach, J ;
Ehrlich, SD ;
Sorokin, A .
GENOME RESEARCH, 2001, 11 (05) :731-753
[10]   SYNTHESIS OF MULTIPLE EXOPRODUCTS IN PSEUDOMONAS-AERUGINOSA IS UNDER THE CONTROL OF RHLR-RHLI, ANOTHER SET OF REGULATORS IN STRAIN PAO1 WITH HOMOLOGY TO THE AUTOINDUCER-RESPONSIVE LUXR-LUXI FAMILY [J].
BRINT, JM ;
OHMAN, DE .
JOURNAL OF BACTERIOLOGY, 1995, 177 (24) :7155-7163