Reinforced Brownian Motion: A Prototype

被引:0
|
作者
Percus, Jerome K. [1 ,2 ]
Percus, Ora E. [1 ]
机构
[1] NYU, Courant Inst, New York, NY 10012 USA
[2] NYU, Dept Phys, New York, NY 10012 USA
关键词
Walk on half-line; Reinforced random walk; Brownian Motion limit; RANDOM-WALK;
D O I
10.1007/s10955-014-1036-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the Brownian Motion limit of a prototypical unit step reinforced random-walk on the half-line. A reinfoced random walk is one which changes the weight of any edge (or vertex) visited to increase the frequency of return visits. The generating function for the discrete case is first derived for the joint probability distribution of (the location of the walker at the step) and , the maximum location the walker achieved in steps. Then the bulk of the analysis concerns the statistics of the limiting Brownian walker, and of its "environment", both parametrized by the amplitude of the reinforcement. The walker marginal distribution can be interpreted as that of free diffusion with a source serving as a diffusing soft confinement, details depending very much on the value of .
引用
收藏
页码:917 / 931
页数:15
相关论文
共 50 条
  • [1] Reinforced Brownian Motion: A Prototype
    Jerome K. Percus
    Ora E. Percus
    Journal of Statistical Physics, 2014, 156 : 917 - 931
  • [2] Brownian Motion
    B. V. Rao
    Resonance, 2021, 26 : 89 - 104
  • [3] Brownian Motion
    Rao, B. V.
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2021, 26 (01): : 89 - 104
  • [4] Scaled Penalization of Brownian Motion with Drift and the Brownian Ascent
    Panzo, Hugo
    SEMINAIRE DE PROBABILITES L, 2019, 2252 : 257 - 300
  • [5] On the maximum drawdown of a Brownian motion
    Magdon-Ismail, M
    Atiya, AF
    Pratap, A
    Abu-Mostafa, YS
    JOURNAL OF APPLIED PROBABILITY, 2004, 41 (01) : 147 - 161
  • [6] HAUSDORFF MEASURE OF ARCS AND BROWNIAN MOTION ON BROWNIAN SPATIAL TREES
    Croydon, David A.
    ANNALS OF PROBABILITY, 2009, 37 (03) : 946 - 978
  • [7] Boundary crossing probability for Brownian motion
    Pötzelberger, K
    Wang, LQ
    JOURNAL OF APPLIED PROBABILITY, 2001, 38 (01) : 152 - 164
  • [8] THE GENEALOGY OF BRANCHING BROWNIAN MOTION WITH ABSORPTION
    Berestycki, Julien
    Berestycki, Nathanael
    Schweinsberg, Jason
    ANNALS OF PROBABILITY, 2013, 41 (02) : 527 - 618
  • [9] Discrete approximations to reflected Brownian motion
    Burdzy, Krzysztof
    Chen, Zhen-Qing
    ANNALS OF PROBABILITY, 2008, 36 (02) : 698 - 727
  • [10] Persistence of Brownian motion in a shear flow
    Takikawa, Yoshinori
    Orihara, Hiroshi
    PHYSICAL REVIEW E, 2013, 88 (06):