Quaternions and special relativity

被引:50
作者
DeLeo, S
机构
[1] Università di Lecce, Dipartimento di Fisica, Sezione di Lecce, Lecce
关键词
D O I
10.1063/1.531548
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We reformulate Special Relativity by a quaternionic algebra on reals. Using real linear quaternions, we show that previous difficulties, concerning the appropriate transformations on the 3+1 space-time, may be overcome. This implies that a complexified quaternionic version of Special Relativity is a choice and not a necessity. (C) 1996 American Institute of Physics.
引用
收藏
页码:2955 / 2968
页数:14
相关论文
共 53 条
[1]   A QUATERNION REPRESENTATION OF THE LORENTZ GROUP FOR CLASSICAL PHYSICAL APPLICATIONS [J].
ABONYI, I ;
BITO, JF ;
TAR, JK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (14) :3245-3254
[2]  
Adler S. L., 1995, QUATERNION QUANTUM M
[3]   SCATTERING AND DECAY THEORY FOR QUATERNIONIC QUANTUM-MECHANICS, AND THE STRUCTURE OF INDUCED T-NONCONSERVATION [J].
ADLER, SL .
PHYSICAL REVIEW D, 1988, 37 (12) :3654-3662
[4]  
ADLER SL, 1986, COMMUN MATH PHYS, V104, P611, DOI 10.1007/BF01211069
[5]   SCALAR-FIELD ALGEBRAIC CHROMODYNAMICS [J].
ADLER, SL .
PHYSICAL REVIEW D, 1980, 21 (02) :550-550
[6]   TIME-DEPENDENT PERTURBATION-THEORY FOR QUATERNIONIC QUANTUM-MECHANICS, WITH APPLICATION TO CP NONCONSERVATION IN K-MESON DECAYS [J].
ADLER, SL .
PHYSICAL REVIEW D, 1986, 34 (06) :1871-1877
[7]   QUATERNIONIC CHROMODYNAMICS AS A THEORY OF COMPOSITE QUARKS AND LEPTONS [J].
ADLER, SL .
PHYSICAL REVIEW D, 1980, 21 (10) :2903-2915
[8]   GENERALIZED QUANTUM DYNAMICS [J].
ADLER, SL .
NUCLEAR PHYSICS B, 1994, 415 (01) :195-242
[9]   QUATERNIONIC QUANTUM-FIELD THEORY [J].
ADLER, SL .
PHYSICAL REVIEW LETTERS, 1985, 55 (08) :783-786
[10]  
Altmann S.A., 1986, Rotations, Quaternions and Double Groups