共 50 条
Fault diagnosis of rotating machinery based on time-frequency image feature extraction
被引:6
|作者:
Zhang, Shiyi
[1
]
Zhang, Laigang
[2
]
Zhao, Teng
[1
]
Mahmoud Mohamed Selim
[3
]
机构:
[1] Chongqing Jiaotong Univ, Sch Shipping & Naval Architecture, Chongqing, Peoples R China
[2] Liaocheng Univ, Sch Mech & Automot Engn, Liaocheng 252059, Shandong, Peoples R China
[3] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Alaflaj, Dept Math, Alaflaj, Saudi Arabia
关键词:
Time-frequency image;
rotating machinery;
fault diagnosis;
D O I:
10.3233/JIFS-189004
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Aiming at the characteristics of time-frequency analysis of unsteady vibration signals, this paper proposes a method based on time-frequency image feature extraction, which combines non-downsampling contour wave transform and local binary mode LBP (Local Binary Pattern) to extract the features of time-frequency image faults. SVM is used for classification and recognition. Finally, the method is verified by simulation data. The results show that the classification accuracy of the method reaches 98.33%, and the extracted texture features are relatively stable. Also, the method is compared with the other 3 feature extraction methods. The results also show that the classification effect of the method is better than that of the traditional feature extraction method.
引用
收藏
页码:5193 / 5200
页数:8
相关论文