Microwave Study of Field-Effect Devices Based on Graphene/Aluminum Nitride/Graphene Structures

被引:4
作者
Adabi, Mohammad [1 ]
Lischner, Johannes [1 ]
Hanham, Stephen M. [1 ]
Mihai, Andrei P. [1 ]
Shaforost, Olena [1 ,2 ]
Wang, Rui [1 ,2 ]
Hao, Ling [2 ]
Petrov, Peter K. [1 ]
Klein, Norbert [1 ]
机构
[1] Imperial Coll London, Dept Mat, London SW7 2AZ, England
[2] Natl Phys Lab, Teddington TW11 0LW, Middx, England
基金
英国工程与自然科学研究理事会;
关键词
GRAPHENE PLASMONICS; TERAHERTZ; MODULATION;
D O I
10.1038/srep44202
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Metallic gate electrodes are often employed to control the conductivity of graphene based field effect devices. The lack of transparency of such electrodes in many optical applications is a key limiting factor. We demonstrate a working concept of a double layer graphene field effect device that utilizes a thin film of sputtered aluminum nitride as dielectric gate material. For this system, we show that the graphene resistance can be modified by a voltage between the two graphene layers. We study how a second gate voltage applied to the silicon back gate modifies the measured microwave transport data at around 8.7 GHz. As confirmed by numerical simulations based on the Boltzmann equation, this system resembles a parallel circuit of two graphene layers with different intrinsic doping levels. The obtained experimental results indicate that the graphene-aluminum nitride-graphene device concept presents a promising technology platform for terahertz-to-optical devices as well as radio-frequency acoustic devices where piezoelectricity in aluminum nitride can also be exploited.
引用
收藏
页数:7
相关论文
共 29 条
[1]   Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene [J].
Degl'Innocenti, Riccardo ;
Jessop, David S. ;
Shah, Yash D. ;
Sibik, Juraj ;
Zeitler, J. Axel ;
Kidambi, Piran R. ;
Hofmann, Stephan ;
Beere, Harvey E. ;
Ritchie, David A. .
ACS NANO, 2014, 8 (03) :2548-2554
[2]   A tunable microwave slot antenna based on graphene [J].
Dragoman, Mircea ;
Neculoiu, Dan ;
Bunea, Alina-Cristina ;
Deligeorgis, George ;
Aldrigo, Martino ;
Vasilache, D. ;
Dinescu, A. ;
Konstantinidis, George ;
Mencarelli, Davide ;
Pierantoni, Luca ;
Modreanu, M. .
APPLIED PHYSICS LETTERS, 2015, 106 (15)
[3]   RF MEMS capacitive switch on semi-suspended CPW using low-loss high-resistivity silicon substrate [J].
Fernandez-Bolanos, M. ;
Perruisseau-Carrier, J. ;
Dainesi, P. ;
Ionescu, A. M. .
MICROELECTRONIC ENGINEERING, 2008, 85 (5-6) :1039-1042
[4]   Self-biased reconfigurable graphene stacks for terahertz plasmonics [J].
Gomez-Diaz, J. S. ;
Moldovan, C. ;
Capdevila, S. ;
Romeu, J. ;
Bernard, L. S. ;
Magrez, A. ;
Ionescu, A. M. ;
Perruisseau-Carrier, J. .
NATURE COMMUNICATIONS, 2015, 6
[5]  
Gomez-Diaz J. S., 2012, 2012 International Symposium on Antennas & Propagation (ISAP 2012). Proceedings, P239
[6]   Non-contact characterization of graphene surface impedance at micro and millimeter waves [J].
Gomez-Diaz, J. S. ;
Perruisseau-Carrier, J. ;
Sharma, P. ;
Ionescu, A. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (11)
[7]   Correlation of p-doping in CVD Graphene with Substrate Surface Charges [J].
Goniszewski, S. ;
Adabi, M. ;
Shaforost, O. ;
Hanham, S. M. ;
Hao, L. ;
Klein, N. .
SCIENTIFIC REPORTS, 2016, 6
[8]   Measurement of the permittivity and loss of high-loss a Near-Field Scanning Microwave Microscope [J].
Gregory, A. P. ;
Blackburn, J. F. ;
Lees, K. ;
Clarke, R. N. ;
Hodgetts, T. E. ;
Hanham, S. M. ;
Klein, N. .
ULTRAMICROSCOPY, 2016, 161 :137-145
[9]   Electrochemical biosensors -: Sensor principles and architectures [J].
Grieshaber, Dorothee ;
MacKenzie, Robert ;
Voeroes, Janos ;
Reimhult, Erik .
SENSORS, 2008, 8 (03) :1400-1458
[10]   Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene [J].
Hanson, George W. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (06)