A generalization of a theorem of Rankin and Swinnerton-Dyer on zeros of modular forms

被引:30
作者
Getz, J
机构
关键词
modular forms;
D O I
10.1090/S0002-9939-04-07478-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Rankin and Swinnerton-Dyer (1970) prove that all zeros of the Eisenstein series E-k in the standard fundamental domain for Gamma lie on A := {e(itheta):pi/ less than or equal to theta less than or equal to 2pi/3}. In this paper we generalize their theorem, providing conditions under which the zeros of other modular forms lie only on the arc A. Using this result we prove a speculation of Ono, namely that the zeros of the unique "gap function" in M-k, the modular form with the maximal number of consecutive zero coefficients in its q-expansion following the constant 1, has zeros only on A. In addition, we show that the j-invariant maps these zeros to totally real algebraic integers of degree bounded by a simple function of weight k.
引用
收藏
页码:2221 / 2231
页数:11
相关论文
共 7 条
[1]   Weierstrass points on X0(p) and supersingular j-invariants [J].
Ahlgren, S ;
Ono, K .
MATHEMATISCHE ANNALEN, 2003, 325 (02) :355-368
[2]  
[Anonymous], 1993, GRADUATE TEXTS MATH
[3]  
Apostol TM., 1998, INTRO ANAL NUMBER TH
[4]  
Ireland K., 1990, GRADUATE TEXTS MATH, V84
[5]   UPPER BOUNDS FOR MODULAR FORMS, LATTICES, AND CODES [J].
MALLOWS, CL ;
ODLYZKO, AM ;
SLOANE, NJA .
JOURNAL OF ALGEBRA, 1975, 36 (01) :68-76
[6]  
Rankin FKC., 1970, B LOND MATH SOC, V2, P169
[7]  
Serre J-P., 1971, SEMINAIRE BOURBAKI, V416, P319