Comparison of the physiological effects and transcriptome responses of Populus simonii under different abiotic stresses

被引:43
作者
Song, Yuepeng [1 ,2 ]
Ci, Dong [1 ,2 ]
Tian, Min [1 ,2 ]
Zhang, Deqiang [1 ,2 ]
机构
[1] Beijing Forestry Univ, Natl Engn Lab Tree Breeding, Coll Biol Sci & Technol, Beijing 100083, Peoples R China
[2] Beijing Forestry Univ, Coll Biol Sci & Technol, Key Lab Genet & Breeding Forest Trees & Ornamenta, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Acclimation; Abiotic stress; Populus simonii; Transcriptome changes; HISTIDINE PHOSPHOTRANSFER PROTEINS; ABSCISIC-ACID; HYDROGEN-PEROXIDE; HEAT-STRESS; GENE-EXPRESSION; JASMONIC ACID; SUPEROXIDE-DISMUTASE; STOMATAL MOVEMENTS; ARABIDOPSIS MUTANT; RUBISCO ACTIVASE;
D O I
10.1007/s11103-014-0218-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the field, perennial plants such as poplar (Populus spp.) must adapt to simultaneous exposure to various abiotic stresses, which can affect their growth and survival. However, the mechanisms for stress-specific adaption in response to different abiotic stresses remain unclear. Thus, understanding the unique acclimation process for each abiotic treatment will require a comprehensive and systematic comparison of the responses of poplar to different abiotic stresses. To compare the responses to multiple stresses, we compared physiological effects and transcriptome changes in poplar under four abiotic stresses (salinity, osmotic, heat and cold). Photosynthesis and antioxidant enzymes changed significantly after 6 h abiotic stress treatment. Therefore, using 6 h abiotic stress treatment groups for transcriptome analysis, we identified a set of 863 differentially expressed genes (653 up-regulated and 210 down-regulated) common to osmotic, salinity, heat and cold treatment. We also identified genes specific to osmotic (1,739), salinity (1,222), cold (2,508) and heat (3,200), revealing that salinity stress has the fewest differently-expressed genes. After gene annotation, we found differences in expression of genes related to electron transport, stomatal control, antioxidant enzymes, cell wall alteration, and phytohormone biosynthesis and signaling in response to various abiotic stresses. This study provides new insights to improve our understanding of the mechanisms by which poplar adapts under different abiotic stress conditions and provides new clues for further studies.
引用
收藏
页码:139 / 156
页数:18
相关论文
共 108 条
[1]   Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain [J].
Allen, JF .
TRENDS IN PLANT SCIENCE, 2003, 8 (01) :15-19
[2]   The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons [J].
Asada, K .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1999, 50 :601-639
[3]   Photosynthesis under stressful environments: An overview [J].
Ashraf, M. ;
Harris, P. J. C. .
PHOTOSYNTHETICA, 2013, 51 (02) :163-190
[4]   The biochemical control of leaf expansion during drought [J].
Bacon, MA .
PLANT GROWTH REGULATION, 1999, 29 (1-2) :101-112
[5]   Determining the limitations and regulation of photosynthetic energy transduction in leaves [J].
Baker, Neil R. ;
Harbinson, Jeremy ;
Kramer, David M. .
PLANT CELL AND ENVIRONMENT, 2007, 30 (09) :1107-1125
[6]   Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana [J].
Baron, Kevin N. ;
Schroeder, Dana F. ;
Stasolla, Claudio .
PLANT SCIENCE, 2012, 188 :48-59
[7]   A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development [J].
Barrero, JM ;
Piqueras, P ;
González-Guzmán, M ;
Serrano, R ;
Rodríguez, PL ;
Ponce, MR ;
Micol, JL .
JOURNAL OF EXPERIMENTAL BOTANY, 2005, 56 (418) :2071-2083
[8]   Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress [J].
Barrero, Jose Maria ;
Rodriguez, Pedro L. ;
Quesada, Victor ;
Piqueras, Pedro ;
Ponce, Maria Rosa ;
Micol, Jose Luis .
PLANT CELL AND ENVIRONMENT, 2006, 29 (10) :2000-2008
[9]   A CHLOROPLAST LIPOXYGENASE IS REQUIRED FOR WOUND-INDUCED JASMONIC ACID ACCUMULATION IN ARABIDOPSIS [J].
BELL, E ;
CREELMAN, RA ;
MULLET, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (19) :8675-8679
[10]   Localized changes in peroxidase activity accompany hydrogen peroxide generation during the development of a nonhost hypersensitive reaction in lettuce [J].
Bestwick, CS ;
Brown, IR ;
Mansfield, JW .
PLANT PHYSIOLOGY, 1998, 118 (03) :1067-1078