How Accurate Is Density Functional Theory at Predicting Dipole Moments? An Assessment Using a New Database of 200 Benchmark Values

被引:216
作者
Hait, Diptarka [1 ]
Head-Gordon, Martin [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA
关键词
GENERALIZED GRADIENT APPROXIMATION; CONSISTENT BASIS-SETS; CORRELATED MOLECULAR CALCULATIONS; MAIN-GROUP THERMOCHEMISTRY; SELF-INTERACTION ERROR; GAUSSIAN-BASIS SETS; NONCOVALENT INTERACTIONS; BROAD ACCURACY; ELECTRON-DENSITIES; CORRELATION-ENERGY;
D O I
10.1021/acs.jctc.7b01252
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dipole moments are a simple, global measure of the accuracy of the electron density of a polar molecule. Dipole moments also affect the interactions of a molecule with other molecules as well as electric fields. To directly assess the accuracy of modern density functionals for calculating dipole moments, we have developed a database of 200 benchmark dipole moments, using coupled cluster theory through triple excitations, extrapolated to the complete basis set limit. This new database is used to assess the performance of 88 popular or recently developed density functionals. The results suggest that double hybrid functionals perform the best, yielding dipole moments within about 3.6-4.5% regularized RMS error versus the reference values which is not very different from the 4% regularized RMS error produced by coupled cluster singles and doubles. Many hybrid functionals also perform quite well, generating regularized RMS errors in the 5-6% range. Some functionals, however, exhibit large outliers, and local functionals in general perform less well than hybrids or double hybrids.
引用
收藏
页码:1969 / 1981
页数:13
相关论文
共 125 条
[1]   Toward reliable density functional methods without adjustable parameters: The PBE0 model [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) :6158-6170
[2]   Density-functional thermochemistry .5. Systematic optimization of exchange-correlation functionals [J].
Becke, AD .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (20) :8554-8560
[3]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[4]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[5]   Perspective: Fifty years of density-functional theory in chemical physics [J].
Becke, Axel D. .
JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (18)
[6]   Development of density functionals for thermochemical kinetics [J].
Boese, AD ;
Martin, JML .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (08) :3405-3416
[7]   A new parametrization of exchange-correlation generalized gradient approximation functionals [J].
Boese, AD ;
Handy, NC .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (13) :5497-5503
[8]   New generalized gradient approximation functionals [J].
Boese, AD ;
Doltsinis, NL ;
Handy, NC ;
Sprik, M .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (04) :1670-1678
[9]   New exchange-correlation density functionals: The role of the kinetic-energy density [J].
Boese, AD ;
Handy, NC .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (22) :9559-9569
[10]   Is the Accuracy of Density Functional Theory for Atomization Energies and Densities in Bonding Regions Correlated? [J].
Brorsen, Kurt R. ;
Yang, Yang ;
Pak, Michael V. ;
Hammes-Schiffer, Sharon .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (09) :2076-2081