Quasi-periodic solutions of nonlinear wave equations with a prescribed potential

被引:20
作者
Yuan, Xiaoping [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, Minist Educ, Key Lab Math Nonlinear Sci, Shanghai, Peoples R China
关键词
nonlinear wave equation; KAM theorem; infinite dimensional Hamiltonian systems; quasi-periodic solutions;
D O I
10.3934/dcds.2006.16.615
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved that for a prescribed potential V there are many quasi-periodic solutions of nonlinear wave equations u(tt) - u(xx) + V(x)u +/- u(3) + O(vertical bar u vertical bar(5)) = subject to Dirichlet boundary conditions.
引用
收藏
页码:615 / 634
页数:20
相关论文
共 14 条
[1]   Families of periodic solutions of resonant PDEs [J].
Bambusi, D ;
Paleari, S .
JOURNAL OF NONLINEAR SCIENCE, 2001, 11 (01) :69-87
[2]   THE NONLINEAR KLEIN-GORDON EQUATION ON AN INTERVAL AS A PERTURBED SINE-GORDON EQUATION [J].
BOBENKO, AI ;
KUKSIN, SB .
COMMENTARII MATHEMATICI HELVETICI, 1995, 70 (01) :63-112
[4]   KAM tori for 1D nonlinear wave equations with periodic boundary conditions [J].
Chierchia, L ;
You, JG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 211 (02) :497-525
[5]   Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrodinger equation [J].
Kuksin, S ;
Poschel, J .
ANNALS OF MATHEMATICS, 1996, 143 (01) :149-179
[6]   HAMILTONIAN PERTURBATIONS OF INFINITE-DIMENSIONAL LINEAR-SYSTEMS WITH AN IMAGINARY SPECTRUM [J].
KUKSIN, SB .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1987, 21 (03) :192-205
[7]  
KUKSIN SB, 1993, LECT NOTES MATH, V1556
[8]  
LIDSKII BV, 1988, FUNCT ANAL APPL+, V22, P332
[9]   Quasi-periodic solutions for a nonlinear wave equation [J].
Poschel, J .
COMMENTARII MATHEMATICI HELVETICI, 1996, 71 (02) :269-296
[10]  
Poschel J, 1996, ANN SCUOLA NORM SU S, V23, P119