The general definition of the complex Monge-Ampere operator

被引:216
作者
Cegrell, U [1 ]
机构
[1] Umea Univ, Dept Math, S-90187 Umea, Sweden
[2] Mid Sweden Univ, TFM, S-85170 Sundsvall, Sweden
关键词
the complex Monge-Ampere operator plurisubharmonic function;
D O I
10.5802/aif.2014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define and study the domain of definition for the complex Monge-Ampere operator. This domain is the most general if we require the operator to be continuous under decreasing limits. The domain is given in terms of approximation by certain "test"-plurisubharmonic functions. We prove estimates, study of decomposition theorem for positive measures and solve a Dirichlet problem.
引用
收藏
页码:159 / +
页数:22
相关论文
共 21 条
[11]  
CEGRELL U, 2001, 10 MID SWED U
[12]  
Coman D., 1997, MATHEMATICA, V39, P45
[13]   MONGE-AMPERE MEASURES AND PLURIHARMONIC MEASURES [J].
DEMAILLY, JP .
MATHEMATISCHE ZEITSCHRIFT, 1987, 194 (04) :519-564
[14]   BOUNDED PLURISUBHARMONIC EXHAUSTION FUNCTIONS AND TAUT DOMAINS [J].
KERZMAN, N ;
ROSAY, JP .
MATHEMATISCHE ANNALEN, 1981, 257 (02) :171-184
[15]   The complex Monge-Ampere equation [J].
Kolodziej, S .
ACTA MATHEMATICA, 1998, 180 (01) :69-117
[16]   SOME PROBLEMS IN PROLONGING CURRENTS IN COMPLEX-ANALYSIS [J].
SIBONY, N .
DUKE MATHEMATICAL JOURNAL, 1985, 52 (01) :157-197
[17]  
SICIAK J, 1982, SOPHIA KOKYUROKO MAT
[18]  
WALSH JB, 1968, J MATH MECH, V18, P143
[19]   Jensen measures and boundary values of plurisubharmonic functions [J].
Wikström, F .
ARKIV FOR MATEMATIK, 2001, 39 (01) :181-200
[20]  
Xing Y, 1999, INDIANA U MATH J, V48, P749