The general definition of the complex Monge-Ampere operator

被引:216
作者
Cegrell, U [1 ]
机构
[1] Umea Univ, Dept Math, S-90187 Umea, Sweden
[2] Mid Sweden Univ, TFM, S-85170 Sundsvall, Sweden
关键词
the complex Monge-Ampere operator plurisubharmonic function;
D O I
10.5802/aif.2014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define and study the domain of definition for the complex Monge-Ampere operator. This domain is the most general if we require the operator to be continuous under decreasing limits. The domain is given in terms of approximation by certain "test"-plurisubharmonic functions. We prove estimates, study of decomposition theorem for positive measures and solve a Dirichlet problem.
引用
收藏
页码:159 / +
页数:22
相关论文
共 21 条
[1]   DIRICHLET PROBLEM FOR A COMPLEX MONGE-AMPERE EQUATION [J].
BEDFORD, E ;
TAYLOR, BA .
INVENTIONES MATHEMATICAE, 1976, 37 (01) :1-44
[2]   A NEW CAPACITY FOR PLURISUBHARMONIC-FUNCTIONS [J].
BEDFORD, E ;
TAYLOR, BA .
ACTA MATHEMATICA, 1982, 149 (1-2) :1-40
[3]  
Bedford E., 1993, Math. Notes, V38, P48
[4]  
Blocki Z., 1993, Bull. Pol. Acad. Sci. Math., V41, P151
[5]  
Blocki Z., 1997, ANN SCUOLA NORM SUP, V23, P721
[6]  
CARLEHED M, 1999, ANN FAC SCI TOULOUSE, V7, P439
[7]  
CEGRELL U, 1994, MICH MATH J, V41, P563
[8]   Pluricomplex energy [J].
Cegrell, U .
ACTA MATHEMATICA, 1998, 180 (02) :187-217
[9]  
CEGRELL U, 2001, PREPRINT SERIES
[10]  
CEGRELL U, 2000, RENC AN COMPL 25 28