Dendritic Zn Deposition in Zinc-Metal Batteries and Mitigation Strategies

被引:32
作者
Jabbari, Vahid [1 ]
Foroozan, Tara [1 ]
Shahbazian-Yassar, Reza [1 ]
机构
[1] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA
来源
ADVANCED ENERGY AND SUSTAINABILITY RESEARCH | 2021年 / 2卷 / 04期
基金
美国国家科学基金会;
关键词
dendrite suppression; energy storage; sustainability; zinc-metal batteries; LITHIUM METAL; ELECTRODE MATERIALS; ZN-MNO2; BATTERY; FLOW BATTERIES; AIR BATTERIES; LONG-LIFE; PERFORMANCE; MORPHOLOGY; CORROSION; SURFACE;
D O I
10.1002/aesr.202000082
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As one of the most promising energy storage technologies, zinc (Zn)-metal batteries (ZMBs) have attracted significant attention due to outstanding properties of Zn, including high energy density (820mAhg(-1)/5855mAhcm(-3)), abundance, low cost, low reactivity, multielectron redox capacity, compatibility with aqueous electrolytes, low equilibrium potential (-0.76V vs SHE), stability, safety, and environmental benignity. Yet, the existence of some major issues such as surface-originated parasitic reactions (e.g., corrosion and H-2 evolution), formation of dead Zn, and oxide passivation leading to capacity loss in ZMBs are hindering their full potential applications. Addressing these challenges requires profound understanding of mechanism of Zn dendrites formation. Therefore, the aim of the current study is to assess some of the latest challenges and advancements concerning ZMBs, with an emphasis on origin and growth mechanism of Zn dendrites. Herein, it is demonstrated that the Zn electrodeposition does not follow a simple reaction/diffusion limited behavior, and other parameters such as surface energy and surface diffusion barrier play great roles on the morphology and microstructure of the deposited Zn. In addition, recent advances to mitigate Zn dendrite issues by applying modifications on the design of electrode, electrolyte, separator and interface are discussed.
引用
收藏
页数:15
相关论文
共 86 条
[1]   Lithium metal protection enabled by in-situ olefin polymerization for high-performance secondary lithium sulfur batteries [J].
An, Yongling ;
Zhang, Zhen ;
Fei, Huifang ;
Xu, Xiaoyan ;
Xiong, Shenglin ;
Feng, Jinkui ;
Ci, Lijie .
JOURNAL OF POWER SOURCES, 2017, 363 :193-198
[2]   The characteristics and performance of hybrid redox flow batteries with zinc negative electrodes for energy storage [J].
Arenas, Luis F. ;
Loh, Adeline ;
Trudgeon, David P. ;
Li, Xiaohong ;
de Leon, Carlos Ponce ;
Walsh, Frank C. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 90 :992-1016
[3]   Transition of lithium growth mechanisms in liquid electrolytes [J].
Bai, Peng ;
Li, Ju ;
Brushett, Fikile R. ;
Bazant, Martin Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3221-3229
[4]   CORROSION AND POLARIZATION CHARACTERISTICS OF ZINC IN NEUTRAL-ACID MEDIA .1. PURE ZINC IN SOLUTIONS OF VARIOUS SODIUM-SALTS [J].
BAUGH, LM .
ELECTROCHIMICA ACTA, 1979, 24 (06) :657-667
[5]   Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization [J].
Cao, Xia ;
Ren, Xiaodi ;
Zou, Lianfeng ;
Engelhard, Mark H. ;
Huang, William ;
Wang, Hansen ;
Matthews, Bethany E. ;
Lee, Hongkyung ;
Niu, Chaojiang ;
Arey, Bruce W. ;
Cui, Yi ;
Wang, Chongmin ;
Xiao, Jie ;
Liu, Jun ;
Xu, Wu ;
Zhang, Ji-Guang .
NATURE ENERGY, 2019, 4 (09) :796-805
[6]   Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life [J].
Chen, Hao ;
Xu, Hanyan ;
Wang, Siyao ;
Huang, Tieqi ;
Xi, Jiabin ;
Cai, Shengying ;
Guo, Fan ;
Xu, Zhen ;
Gao, Weiwei ;
Gao, Chao .
SCIENCE ADVANCES, 2017, 3 (12)
[7]   Quasi-Isolated Au Particles as Heterogeneous Seeds To Guide Uniform Zn Deposition for Aqueous Zinc-Ion Batteries [J].
Cui, Mangwei ;
Xiao, Yan ;
Kang, Litao ;
Du, Wei ;
Gao, Yanfeng ;
Sun, Xueqin ;
Zhou, Yanli ;
Li, Xiangming ;
Li, Hongfei ;
Jiang, Fuyi ;
Zhi, Chunyi .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (09) :6490-6496
[8]   An Interface-Bridged Organic-Inorganic Layer that Suppresses Dendrite Formation and Side Reactions for Ultra-Long-Life Aqueous Zinc Metal Anodes [J].
Cui, Yanhui ;
Zhao, Qinghe ;
Wu, Xiaojun ;
Chen, Xin ;
Yang, Jinlong ;
Wang, Yuetao ;
Qin, Runzhi ;
Ding, Shouxiang ;
Song, Yongli ;
Wu, Junwei ;
Yang, Kai ;
Wang, Zijian ;
Mei, Zongwei ;
Song, Zhibo ;
Wu, Hong ;
Jiang, Zhongyi ;
Qian, Guoyu ;
Yang, Luyi ;
Pan, Feng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (38) :16594-16601
[9]   Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities [J].
Davidson, Rachel ;
Verma, Ankit ;
Santos, David ;
Hao, Feng ;
Fincher, Cole D. ;
Zhao, Dexin ;
Attari, Vahid ;
Schofield, Parker ;
Van Buskirk, Jonathan ;
Fraticelli-Cartagena, Antonio ;
Alivio, Theodore E. G. ;
Arroyave, Raymundo ;
Xie, Kelvin ;
Pharr, Matt ;
Mukherjee, Partha P. ;
Banerjee, Sarbajit .
MATERIALS HORIZONS, 2020, 7 (03) :843-854
[10]   Utilization of Hyper-Dendritic Zinc during High Rate Discharge in Alkaline Electrolytes [J].
Davies, Greg ;
Hsieh, Andrew G. ;
Hultmark, Marcus ;
Mueller, Michael E. ;
Steingart, Daniel A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (07) :A1340-A1347