Discriminating pseudoprogression and true progression in diffuse infiltrating glioma using multi-parametric MRI data through deep learning

被引:53
作者
Lee, Joonsang [1 ]
Wang, Nicholas [1 ]
Turk, Sevcan [2 ]
Mohammed, Shariq [1 ]
Lobo, Remy [2 ]
Kim, John [2 ]
Liao, Eric [2 ]
Camelo-Piragua, Sandra [3 ]
Kim, Michelle [4 ]
Junck, Larry [5 ]
Bapuraj, Jayapalli [2 ]
Srinivasan, Ashok [2 ]
Rao, Arvind [1 ]
机构
[1] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Pathol, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Radiat Oncol, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Neurol, Ann Arbor, MI USA
关键词
CONVOLUTIONAL NEURAL-NETWORKS; HIGH-GRADE GLIOMAS; RESPONSE ASSESSMENT; RADIATION NECROSIS; TUMOR PROGRESSION; GLIOBLASTOMA; DIAGNOSIS; RECURRENCE; PREDICTION; PATTERNS;
D O I
10.1038/s41598-020-77389-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Differentiating pseudoprogression from true tumor progression has become a significant challenge in follow-up of diffuse infiltrating gliomas, particularly high grade, which leads to a potential treatment delay for patients with early glioma recurrence. In this study, we proposed to use a multiparametric MRI data as a sequence input for the convolutional neural network with the recurrent neural network based deep learning structure to discriminate between pseudoprogression and true tumor progression. In this study, 43 biopsy-proven patient data identified as diffuse infiltrating glioma patients whose disease progressed/recurred were used. The dataset consists of five original MRI sequences; pre-contrast T1-weighted, post-contrast T1-weighted, T2-weighted, FLAIR, and ADC images as well as two engineered sequences; T1post-T1pre and T2-FLAIR. Next, we used three CNN-LSTM models with a different set of sequences as input sequences to pass through CNN-LSTM layers. We performed threefold cross-validation in the training dataset and generated the boxplot, accuracy, and ROC curve, AUC from each trained model with the test dataset to evaluate models. The mean accuracy for VGG16 models ranged from 0.44 to 0.60 and the mean AUC ranged from 0.47 to 0.59. For CNN-LSTM model, the mean accuracy ranged from 0.62 to 0.75 and the mean AUC ranged from 0.64 to 0.81. The performance of the proposed CNN-LSTM with multiparametric sequence data was found to outperform the popular convolutional CNN with a single MRI sequence. In conclusion, incorporating all available MRI sequences into a sequence input for a CNN-LSTM model improved diagnostic performance for discriminating between pseudoprogression and true tumor progression.
引用
收藏
页数:10
相关论文
共 54 条
[1]   Histopathological Breast Cancer Image Classification by Deep Neural Network Techniques Guided by Local Clustering [J].
Abdullah-Al Nahid ;
Mehrabi, Mohamad Ali ;
Kong, Yinan .
BIOMED RESEARCH INTERNATIONAL, 2018, 2018
[2]  
Abrol S, 2017, NEURO-ONCOLOGY, V19, P162
[3]   Glioblastoma Recurrence Patterns After Radiation Therapy With Regard to the Subventricular Zone [J].
Adeberg, Sebastian ;
Koenig, Laila ;
Bostel, Tilman ;
Harrabi, Semi ;
Welzel, Thomas ;
Debus, Juergen ;
Combs, Stephanie E. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2014, 90 (04) :886-893
[4]   Histopathology-validated machine learning radiographic biomarker for noninvasive discrimination between true progression and pseudo-progression in glioblastoma [J].
Akbari, Hamed ;
Rathore, Saima ;
Bakas, Spyridon ;
Nasrallah, MacLean P. ;
Shukla, Gaurav ;
Mamourian, Elizabeth ;
Rozycki, Martin ;
Bagley, Stephen J. ;
Rudie, Jeffrey D. ;
Flanders, Adam E. ;
Dicker, Adam P. ;
Desai, Arati S. ;
O'Rourke, Donald M. ;
Brem, Steven ;
Lustig, Robert ;
Mohan, Suyash ;
Wolf, Ronald L. ;
Bilello, Michel ;
Martinez-Lage, Maria ;
Davatzikos, Christos .
CANCER, 2020, 126 (11) :2625-2636
[5]   Deep learning in the detection of high-grade glioma recurrence using multiple MRI sequences: A pilot study [J].
Bacchi, Stephen ;
Zerner, Toby ;
Dongas, John ;
Asahina, Adon Toru ;
Abou-Hamden, Amal ;
Otto, Sophia ;
Oakden-Rayner, Luke ;
Patel, Sandy .
JOURNAL OF CLINICAL NEUROSCIENCE, 2019, 70 :11-13
[6]   Pseudoprogression as an adverse event of glioblastoma therapy [J].
Balana, Carmen ;
Capellades, Jaume ;
Pineda, Estela ;
Estival, Anna ;
Puig, Josep ;
Domenech, Sira ;
Verger, Eugenia ;
Pujol, Teresa ;
Martinez-Garcia, Maria ;
Oleaga, Laura ;
Velarde, JoseMaria ;
Mesia, Carlos ;
Fuentes, Rafael ;
Marruecos, Jordi ;
Del Barco, Sonia ;
Villa, Salvador ;
Carrato, Cristina ;
Gallego, Oscar ;
Gil-Gil, Miguel ;
Craven-Bartle, Jordi ;
Alameda, Francesc .
CANCER MEDICINE, 2017, 6 (12) :2858-2866
[7]   Recent advances in the molecular understanding of glioblastoma [J].
Bleeker, Fonnet E. ;
Molenaar, Remco J. ;
Leenstra, Sieger .
JOURNAL OF NEURO-ONCOLOGY, 2012, 108 (01) :11-27
[8]   MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients [J].
Brandes, Alba A. ;
Franceschi, Enrico ;
Tosoni, Alicia ;
Blatt, Valeria ;
Pession, Annalisa ;
Tallini, Giovanni ;
Bertorelle, Roberta ;
Bartolini, Stefania ;
Calbucci, Fabio ;
Andreoli, Alvaro ;
Frezza, Giampiero ;
Leonardi, Marco ;
Spagnolli, Federica ;
Ermani, Mario .
JOURNAL OF CLINICAL ONCOLOGY, 2008, 26 (13) :2192-2197
[9]   Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas [J].
Brandsma, Dieto ;
Stalpers, Lukas ;
Taal, Walter ;
Sminia, Peter ;
van den Bent, Martinj .
LANCET ONCOLOGY, 2008, 9 (05) :453-461
[10]  
Cai Jinzheng, 2016, Med Image Comput Comput Assist Interv, V9901, P442, DOI 10.1007/978-3-319-46723-8_51