Multiple Description Coding for Stationary Gaussian Sources

被引:8
作者
Chen, Jun [1 ]
Tian, Chao [2 ,3 ]
Diggavi, Suhas [2 ]
机构
[1] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON L8S 4K1, Canada
[2] Ecole Polytech Fed Lausanne, Sch Comp & Commun Sci, CH-1015 Lausanne, Switzerland
[3] AT&T Labs Res, Florham Pk, NJ 07932 USA
基金
瑞士国家科学基金会;
关键词
Gaussian source; lattice quantization; multiple description coding; power spectrum; FILTER BANKS; CHANNELS;
D O I
10.1109/TIT.2009.2018178
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of multiple description coding for stationary Gaussian sources under the squared error distortion measure. The rate region is characterized for the 2-description case. It is shown that each supporting line of the rate region is achievable with a transform lattice quantization scheme. We show the optimal coding scheme has a natural spectral domain coding interpretation, which yields a reverse water-filling solution with a frequency-dependent water level instead of the flat water level as in the conventional single description case.
引用
收藏
页码:2868 / 2881
页数:14
相关论文
共 21 条
[2]   Multiple description quantization via Gram-Schmidt orthogonalization [J].
Chen, Jun ;
Tian, Chao ;
Berger, Toby ;
Hemami, Sheila S. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) :5197-5217
[3]   The worst additive noise under a covariance constraint [J].
Diggavi, SN ;
Cover, TM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) :3072-3081
[4]   Optimal filter banks for multiple description coding: Analysis and synthesis [J].
Dragotti, PL ;
Servetto, SD ;
Vetterli, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (07) :2036-2052
[5]  
ELGAMAL AA, 1982, IEEE T INFORM THEORY, V28, P851, DOI 10.1109/TIT.1982.1056588
[6]   The rate distortion region for the multiple description problem [J].
Fleming, M ;
Effros, M .
2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, :208-208
[7]   Dithered lattice-based quantizers for multiple descriptions [J].
Frank-Dayan, Y ;
Zamir, R .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (01) :192-204
[8]   Toeplitz and Circulant Matrices: A Review [J].
Gray, Robert M. .
FOUNDATIONS AND TRENDS IN COMMUNICATIONS AND INFORMATION THEORY, 2006, 2 (03) :155-239
[9]  
Grenander U, 1958, California Monographs in Mathematical Sciences
[10]  
Hoffman K., 1962, Banach Spaces of Analytic Functions