Photonic Fano Resonance of Multishaped Cu2O Nanoparticles on ZnO Nanowires Modulating Efficiency of Hydrogen Generation in Water Splitting Cell

被引:24
作者
Kung, Po-Yen [1 ]
Cai, Shih-Liang [1 ]
Pan, Fei [2 ,3 ]
Shen, Tin-Wei [1 ]
Su, Yen-Hsun [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Mat Sci & Engn, 1 Univ Rd, Tainan 701, Taiwan
[2] Tech Univ Munich, Phys Dept, Arcisstr 21, D-85748 Munich, Germany
[3] Ludwig Maximilians Univ Munchen, Dept Phys, Geschwister Scholl Pl 1, D-80799 Munich, Germany
关键词
Solar water splitting; Finite difference time domain; Photonic Fano resonance; FACILE SYNTHESIS; THIN-FILMS; SEMICONDUCTOR; PERFORMANCE; LAYER; NANORODS; ENERGY; CO2;
D O I
10.1021/acssuschemeng.8b00381
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The different-shape Cu2O nanostructured in solar water splitting system serves as the photon absorber structure for modulating photoelectric conversion to challenge the issue of the high resistance and low electronic mobility with the different light trapping effect due to the orientation and geometry of Cu2O. Finite difference time domain (FDTD) simulation results demonstrate that the Cu2O nanostructured of truncated octahedral exhibits photonic Fano resonance compared with the other shapes. The generation rate of electrons and holes can rise with truncated octahedral Cu2O nanostructures on the ZnO nanowires. By combining solar water splitting with photonic Fano resonance, we can use a lower voltage 0.7 V (the standard potential of the water electrolysis is -1.23 V) to splitting water, and then separate H-2 and O-2 into different electrodes. The hydrogen generation rate of truncated octahedral Cu2O can reach 3 x 10(-4) ml/s.cm(2), which is about 10 times higher than that of Cu2O in other shapes by modulating photonic Fano resonance, which has the potential application in the field of integrated quantum system in the future.
引用
收藏
页码:6590 / 6598
页数:17
相关论文
共 51 条
[1]   Clean hydrogen and power from impure water [J].
Acar, Canan ;
Dincer, Ibrahim ;
Naterer, Greg F. .
JOURNAL OF POWER SOURCES, 2016, 331 :189-197
[2]   Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion [J].
Aguirre, Matias E. ;
Zhou, Ruixin ;
Eugene, Alexis J. ;
Guzman, Marcelo I. ;
Grela, Maria A. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 217 :485-493
[3]  
[Anonymous], 2015, E927102015 ASTM
[4]   Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects [J].
Bak, T ;
Nowotny, J ;
Rekas, M ;
Sorrell, CC .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (10) :991-1022
[5]   Energy-Conversion Properties of Vapor-Liquid-Solid-Grown Silicon Wire-Array Photocathodes [J].
Boettcher, Shannon W. ;
Spurgeon, Joshua M. ;
Putnam, Morgan C. ;
Warren, Emily L. ;
Turner-Evans, Daniel B. ;
Kelzenberg, Michael D. ;
Maiolo, James R. ;
Atwater, Harry A. ;
Lewis, Nathan S. .
SCIENCE, 2010, 327 (5962) :185-187
[6]  
Bohren C. F., 1983, Absorption and Scattering of Light by Small Particles, DOI 10.1002/9783527618156
[7]   Tuning the Color of Silicon Nanostructures [J].
Cao, Linyou ;
Fan, Pengyu ;
Barnard, Edward S. ;
Brown, Ana M. ;
Brongersma, Mark L. .
NANO LETTERS, 2010, 10 (07) :2649-2654
[8]   Resonant Germanium Nanoantenna Photodetectors [J].
Cao, Linyou ;
Park, Joon-Shik ;
Fan, Pengyu ;
Clemens, Bruce ;
Brongersma, Mark L. .
NANO LETTERS, 2010, 10 (04) :1229-1233
[9]   Semiconductor Nanowire Optical Antenna Solar Absorbers [J].
Cao, Linyou ;
Fan, Pengyu ;
Vasudev, Alok P. ;
White, Justin S. ;
Yu, Zongfu ;
Cai, Wenshan ;
Schuller, Jon A. ;
Fan, Shanhui ;
Brongersma, Mark L. .
NANO LETTERS, 2010, 10 (02) :439-445
[10]  
Cao LY, 2009, NAT MATER, V8, P643, DOI [10.1038/nmat2477, 10.1038/NMAT2477]