Imputation-based semiparametric estimation for INAR(1) processes with missing data

被引:0
|
作者
Xiong, Wei [1 ]
Wang, Dehui [1 ]
Wang, Xinyang [2 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] Shenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Peoples R China
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2020年 / 49卷 / 05期
基金
中国国家自然科学基金;
关键词
Integer-valued autoregressive; semiparametric likelihood; first-step imputation; missing not at random; INFERENCE; MODELS;
D O I
10.15672/hujms.643081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In applied problems parameter estimation with missing data has risen as a hot topic. Imputation for ignorable incomplete data is one of the most popular methods in integer-valued time series. For data missing not at random (MNAR), estimators directly derived by imputation will lead results that is sensitive to the failure of the effectiveness. In view of the first-order integer-valued autoregressive (INAR(1)) processes with MNAR response mechanism, we consider an imputation based semiparametric method, which recommends the complete auxiliary variable of Yule-Walker equation. Asymptotic properties of relevant estimators are also derived. Some simulation studies are conducted to verify the effectiveness of our estimators, and a real example is also presented as an illustration.
引用
收藏
页码:1843 / 1864
页数:22
相关论文
共 50 条
  • [1] A multiple imputation-based sensitivity analysis approach for data subject to missing not at random
    Hsu, Chiu-Hsieh
    He, Yulei
    Hu, Chengcheng
    Zhou, Wei
    STATISTICS IN MEDICINE, 2020, 39 (26) : 3756 - 3771
  • [2] Semiparametric estimation of copula models with nonignorable missing data
    Guo, Feng
    Ma, Wei
    Wang, Lei
    JOURNAL OF NONPARAMETRIC STATISTICS, 2020, 32 (01) : 109 - 130
  • [3] A multiple imputation-based sensitivity analysis approach for regression analysis with an missing not at random covariate
    Hsu, Chiu-Hsieh
    He, Yulei
    Hu, Chengcheng
    Zhou, Wei
    STATISTICS IN MEDICINE, 2023, 42 (14) : 2275 - 2292
  • [4] A Semiparametric Estimation of Mean Functionals With Nonignorable Missing Data
    Kim, Jae Kwang
    Yu, Cindy Long
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (493) : 157 - 165
  • [5] Semiparametric maximum likelihood estimation with data missing not at random
    Morikawa, Kosuke
    Kim, Jae Kwang
    Kano, Yutaka
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2017, 45 (04): : 393 - 409
  • [6] Calibration estimation of semiparametric copula models with data missing at random
    Hamori, Shigeyuki
    Motegi, Kaiji
    Zhang, Zheng
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 173 : 85 - 109
  • [7] Poisson-Lindley INAR(1) Processes: Some Estimation and Forecasting Methods
    Nasirzadeh, Roya
    Zamani, Atefeh
    JIRSS-JOURNAL OF THE IRANIAN STATISTICAL SOCIETY, 2020, 19 (02): : 145 - 173
  • [8] SEMIPARAMETRIC ESTIMATION WITH DATA MISSING NOT AT RANDOM USING AN INSTRUMENTAL VARIABLE
    Sun, BaoLuo
    Liu, Lan
    Miao, Wang
    Wirth, Kathleen
    Robins, James
    Tchetgen, Eric J. Tchetgen
    STATISTICA SINICA, 2018, 28 (04) : 1965 - 1983
  • [9] Imputation and low-rank estimation with Missing Not At Random data
    Sportisse, Aude
    Boyer, Claire
    Josse, Julie
    STATISTICS AND COMPUTING, 2020, 30 (06) : 1629 - 1643
  • [10] Multiple imputation for missing data in a longitudinal cohort study: a tutorial based on a detailed case study involving imputation of missing outcome data
    Lee, Katherine J.
    Roberts, Gehan
    Doyle, Lex W.
    Anderson, Peter J.
    Carlin, John B.
    INTERNATIONAL JOURNAL OF SOCIAL RESEARCH METHODOLOGY, 2016, 19 (05) : 575 - 591