Optimization of volatile fatty acid production by sugarcane vinasse dark fermentation using a response surface methodology. Links between performance and microbial community composition

被引:18
作者
Eng, Felipe [1 ]
Fuess, Lucas Tadeu [1 ,2 ]
Bovio-Winkler, Patricia [3 ]
Etchebehere, Claudia [3 ]
Sakamoto, Isabel Kimiko [1 ]
Zaiat, Marcelo [1 ]
机构
[1] Univ Sao Paulo LPB EESC USP, Escola Engn Sao Carlos, Lab Proc Biol, Ave Joao Dagnone 1100, Sao Carlos, SP, Brazil
[2] Univ Sao Paulo DEQ EP USP, Escola Politecn, Dept Engn Quim, Ave Prof Lineu Prestes 580,Bloco 18, BR-05508000 Sao Carlos, SP, Brazil
[3] Minist Educ, Microbial Ecol Lab, Biochem & Microbial Genom Dept, Biol Res Inst Clemente Estable, Italia Av, Montevideo 3318, Uruguay
基金
巴西圣保罗研究基金会;
关键词
Sugarcane biorefinery; Carboxylate platform; Vinasse management; Central composite design; 16S rRNA gene sequencing; ORGANIC LOADING RATE; ANAEROBIC-DIGESTION; HYDROGEN-PRODUCTION; BIOHYDROGEN PRODUCTION; BED REACTOR; FOOD WASTE; METHANE PRODUCTION; PROCESS PARAMETERS; TEQUILA VINASSE; VFAS PRODUCTION;
D O I
10.1016/j.seta.2022.102764
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The recovery of volatile fatty acids (VFA) from waste and wastewaters has recently been pointed out as a promising strategy for adding value to residues, which characterizes the carboxylate platform. The exploitation of sugarcane vinasse within the carboxylate platform is still an incipient approach and has to be further investigated to determine the conditions which optimize the process. This study aimed to optimize the production of VFA (as the sum of concentrations of acetic, butyric and propionic acids) through the dark fermentation (DF) of sugarcane vinasse. A central composite design (CCD, factorial 2(2)) and response surface methodology (RSM) regarding two independent variables, namely, temperature (33-47 degrees C) and initial pH (7.1-9.9), was performed. Experiments were conducted in batch reactors using diluted vinasse (COD = 10 g L (-1)) without nutrient supplementation. The results showed that the production of VFA reached a peak of 2,980 mg L (-1) (as the sum of VFA produced), yield of 332 mg-CODVFA g 1CODtinicial and productivity of 619 mg-COD L (-1) d (1)) at 39.6.C and initial pH of 8.8. The microbial community analysis performed by 16S rRNA gene amplicon sequencing showed that organisms from the families Clostridiaceae, Enterobacteriaceae and Lachnospiraceae, and Veillonellales-Selenomonadales order prevailed during higher VFA production, whilst the presence of Desulfotomaculales and Lactobacillaceae families could be associated with VFA consumption and lactic acid production, respectively. These results provide a basis for vinasse management within the carboxylate platform context, potentially diversifying the product portfolio of sugarcane biorefineries.
引用
收藏
页数:12
相关论文
共 75 条
[1]   A critical review of biogas production and usage with legislations framework across the globe [J].
Abanades, S. ;
Abbaspour, H. ;
Ahmadi, A. ;
Das, B. ;
Ehyaei, M. A. ;
Esmaeilion, F. ;
Assad, M. El Haj ;
Hajilounezhad, T. ;
Jamali, D. H. ;
Hmida, A. ;
Ozgoli, H. A. ;
Safari, S. ;
AlShabi, M. ;
Bani-Hani, E. H. .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2022, 19 (04) :3377-3400
[2]  
Adorno MAT, 2014, Am J Anal Chem, V5, P406, DOI 10.4236/ajac.2014.57049
[3]   Optimization, metabolic pathways modeling and scale-up estimative of an AnSBBR applied to biohydrogen production by co-digestion of vinasse and molasses [J].
Albanez, R. ;
Louato, G. ;
Zaiat, M. ;
Ratusznei, S. M. ;
Rodrigues, J. A. D. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (45) :20473-20484
[4]   Chain Elongation with Reactor Microbiomes: Open-Culture Biotechnology To Produce Biochemicals [J].
Angenent, Largus T. ;
Richter, Hanno ;
Buckel, Wolfgang ;
Spirito, Catherine M. ;
Steinbusch, Kirsten J. J. ;
Plugge, Caroline M. ;
Strik, David P. B. T. B. ;
Grootscholten, Tim I. M. ;
Buisman, Cees J. N. ;
Hamelers, Hubertus V. M. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (06) :2796-2810
[5]  
APHA AWWA WPFC, 2012, Standard Methods for Examination of Water and Waste Water
[6]   Propionispora vibrioides, nov gen., nov sp., a new gram-negative, spore-forming anaerobe that ferments sugar alcohols [J].
Biebl, H ;
Schwab-Hanisch, H ;
Spröer, C ;
Lünsdorf, H .
ARCHIVES OF MICROBIOLOGY, 2000, 174 (04) :239-247
[7]   Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion [J].
Bohutskyi, Pavlo ;
Chow, Steven ;
Ketter, Ben ;
Betenbaugh, Michael J. ;
Bouwer, Edward J. .
APPLIED ENERGY, 2015, 154 :718-731
[8]   Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 [J].
Bolyen, Evan ;
Rideout, Jai Ram ;
Dillon, Matthew R. ;
Bokulich, NicholasA. ;
Abnet, Christian C. ;
Al-Ghalith, Gabriel A. ;
Alexander, Harriet ;
Alm, Eric J. ;
Arumugam, Manimozhiyan ;
Asnicar, Francesco ;
Bai, Yang ;
Bisanz, Jordan E. ;
Bittinger, Kyle ;
Brejnrod, Asker ;
Brislawn, Colin J. ;
Brown, C. Titus ;
Callahan, Benjamin J. ;
Caraballo-Rodriguez, Andres Mauricio ;
Chase, John ;
Cope, Emily K. ;
Da Silva, Ricardo ;
Diener, Christian ;
Dorrestein, Pieter C. ;
Douglas, Gavin M. ;
Durall, Daniel M. ;
Duvallet, Claire ;
Edwardson, Christian F. ;
Ernst, Madeleine ;
Estaki, Mehrbod ;
Fouquier, Jennifer ;
Gauglitz, Julia M. ;
Gibbons, Sean M. ;
Gibson, Deanna L. ;
Gonzalez, Antonio ;
Gorlick, Kestrel ;
Guo, Jiarong ;
Hillmann, Benjamin ;
Holmes, Susan ;
Holste, Hannes ;
Huttenhower, Curtis ;
Huttley, Gavin A. ;
Janssen, Stefan ;
Jarmusch, Alan K. ;
Jiang, Lingjing ;
Kaehler, Benjamin D. ;
Bin Kang, Kyo ;
Keefe, Christopher R. ;
Keim, Paul ;
Kelley, Scott T. ;
Knights, Dan .
NATURE BIOTECHNOLOGY, 2019, 37 (08) :852-857
[9]  
Callahan BJ, 2016, NAT METHODS, V13, P581, DOI [10.1038/NMETH.3869, 10.1038/nmeth.3869]
[10]   Oleaginous Yeasts as Cell Factories for the Sustainable Production of Microbial Lipids by the Valorization of Agri-Food Wastes [J].
Caporusso, Antonio ;
Capece, Angela ;
De Bari, Isabella .
FERMENTATION-BASEL, 2021, 7 (02)