COMPUTER AIDED DIAGNOSIS OF CLINICALLY SIGNIFICANT PROSTATE CANCER IN LOW-RISK PATIENTS ON MULTI-PARAMETRIC MR IMAGES USING DEEP LEARNING

被引:0
作者
Arif, Muhammad [1 ]
Schoots, Ivo G. [1 ]
Castillo, Jose M. T. [1 ]
Roobol, Monique J. [2 ]
Niessen, Wiro [1 ]
Veenland, Jifke F. [1 ]
机构
[1] Erasmus MC, Dept Radiol & Nucl Med, Rotterdam, Netherlands
[2] Erasmus MC, Dept Urol, Rotterdam, Netherlands
来源
2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020) | 2020年
关键词
Prostate Cancer; Segmentation; Active Surveillance; Convolutional Neural Network; Multi-parametric MRI;
D O I
10.1109/isbi45749.2020.9098577
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The purpose of this study was to develop a quantitative method for detection and segmentation of clinically significant (ISUP grade >= 2) prostate cancer (PCa) in low-risk patient. A consecutive cohort of 356 patients ( active surveillance) was selected and divided in two groups: 1) MRI and targeted-biopsy positive PCa, 2) MRI and standard-biopsy negative PCa. A 3D convolutional neural network was trained in three-fold cross validation with MRI and targeted-biopsy positive patient's data using two mp-MRI sequences (T2-weighted, DWI-b800) and ADC map as input. After training, the model was tested on separate positive and negative patients to evaluate the performance. The model achieved an average area under the curve (AUC) of the receiver operating characteristics is 0.78 (sensitivity = 85%, specificity = 72%). The diagnostic performance of the proposed method in segmenting significant PCa and to conform non-significant PCa in low-risk patients is characterized by a good AUC and negative-predictive-value.
引用
收藏
页码:1482 / 1485
页数:4
相关论文
共 13 条
[1]  
Aldoj N., 2019, European Radiology
[2]   Radiomic Features on MRI Enable Risk Categorization of Prostate Cancer Patients on Active Surveillance: Preliminary Findings [J].
Algohary, Ahmad ;
Viswanath, Satish ;
Shiradkar, Rakesh ;
Ghose, Soumya ;
Pahwa, Shivani ;
Moses, Daniel ;
Jambor, Ivan ;
Shnier, Ronald ;
Bohm, Maret ;
Haynes, Anne-Maree ;
Brenner, Phillip ;
Delprado, Warick ;
Thompson, James ;
Pulbrock, Marley ;
Purysko, Andrei S. ;
Verma, Sadhna ;
Ponsky, Lee ;
Stricker, Phillip ;
Madabhushi, Anant .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (03) :818-828
[3]   Automatic needle detection and real-time Bi-planar needle visualization during 3D ultrasound scanning of the liver [J].
Arif, Muhammad ;
Moelker, Adriaan ;
van Walsum, Theo .
MEDICAL IMAGE ANALYSIS, 2019, 53 :104-110
[4]   Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer [J].
Drost, Frank-Jan H. ;
Osses, Daniel F. ;
Nieboer, Daan ;
Steyerberg, Ewout W. ;
Bangma, Chris H. ;
Roobol, Monique J. ;
Schoots, Ivo G. .
COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2019, (04)
[5]   The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma Definition of Grading Patterns and Proposal for a New Grading System [J].
Epstein, Jonathan I. ;
Egevad, Lars ;
Amin, Mahul B. ;
Delahunt, Brett ;
Srigley, John R. ;
Humphrey, Peter A. .
AMERICAN JOURNAL OF SURGICAL PATHOLOGY, 2016, 40 (02) :244-252
[6]   Interreader agreement of PI-RADS v. 2 in assessing prostate cancer with multiparametric MRI: A study using whole-mount histology as the standard of reference [J].
Girometti, Rossano ;
Giannarini, Gianluca ;
Greco, Franco ;
Isola, Miriam ;
Cereser, Lorenzo ;
Como, Giuseppe ;
Sioletic, Stefano ;
Pizzolitto, Stefano ;
Crestani, Alessandro ;
Ficarra, Vincenzo ;
Zuiani, Chiara .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 49 (02) :546-555
[7]   Screening and Prostate-Cancer Mortality in a Randomized European Study [J].
Schroeder, Fritz H. ;
Hugosson, Jonas ;
Roobol, Monique J. ;
Tammela, Teuvo L. J. ;
Ciatto, Stefano ;
Nelen, Vera ;
Kwiatkowski, Maciej ;
Lujan, Marcos ;
Lilja, Hans ;
Zappa, Marco ;
Denis, Louis J. ;
Recker, Franz ;
Berenguer, Antonio ;
Maattanen, Liisa ;
Bangma, Chris H. ;
Aus, Gunnar ;
Villers, Arnauld ;
Rebillard, Xavier ;
van der Kwast, Theodorus ;
Blijenberg, Bert G. ;
Moss, Sue M. ;
de Koning, Harry J. ;
Auvinen, Anssi .
NEW ENGLAND JOURNAL OF MEDICINE, 2009, 360 (13) :1320-1328
[8]   Textural analysis of multiparametric MRI detects transition zone prostate cancer [J].
Sidhu, Harbir S. ;
Benigno, Salvatore ;
Ganeshan, Balaji ;
Dikaios, Nikos ;
Johnston, Edward W. ;
Allen, Clare ;
Kirkham, Alex ;
Groves, Ashley M. ;
Ahmed, Hashim U. ;
Emberton, Mark ;
Taylor, Stuart A. ;
Halligan, Steve ;
Punwani, Shonit .
EUROPEAN RADIOLOGY, 2017, 27 (06) :2348-2358
[9]   Cancer Statistics, 2016 [J].
Siegel, Rebecca L. ;
Miller, Kimberly D. ;
Jemal, Ahmedin .
CA-A CANCER JOURNAL FOR CLINICIANS, 2016, 66 (01) :7-30
[10]   Prostate cancer detection from multi-institution multiparametric MRIs using deep convolutional neural networks [J].
Sumathipala, Yohan ;
Lay, Nathan ;
Turkbey, Baris ;
Smith, Clayton ;
Choyke, Peter L. ;
Summers, Ronald M. .
JOURNAL OF MEDICAL IMAGING, 2018, 5 (04)