Lagrangian Acceleration Statistics in 2D and 3D Turbulence

被引:0
作者
Kamps, Oliver [1 ]
Wilczek, Michael [2 ]
Friedrich, Rudolf [2 ]
机构
[1] Univ Munster, Ctr Nonlinear Sci, Munster, Germany
[2] Univ Munster, Inst Theoret Phys, Munster, Germany
来源
PROGRESS IN TURBULENCE AND WIND ENERGY IV | 2012年 / 141卷
关键词
CASCADE;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper we compare Lagrangian statistical quantities in the direct energy cascade of three-dimensional turbulence and the corresponding observables for the case of the inverse energy cascade in two dimensions. We focus on the acceleration of a tracer particle along its trajectory. Interpreting the acceleration as a stochastic process we show that for both systems the Markov time scale, which is an indicator for the length of the memory of a stochastic process, is in the order of magnitude of the Lagrangian integral time scale.
引用
收藏
页码:67 / 70
页数:4
相关论文
共 5 条
[1]   Inverse energy cascade in two-dimensional turbulence: Deviations from Gaussian behavior [J].
Boffetta, G ;
Celani, A ;
Vergassola, M .
PHYSICAL REVIEW E, 2000, 61 (01) :R29-R32
[2]   Description of a turbulent cascade by a Fokker-Planck equation [J].
Friedrich, R ;
Peinke, J .
PHYSICAL REVIEW LETTERS, 1997, 78 (05) :863-866
[3]   Lagrangian statistics in forced two-dimensional turbulence [J].
Kamps, O. ;
Friedrich, R. .
PHYSICAL REVIEW E, 2008, 78 (03)
[4]   REYNOLDS-NUMBER EFFECTS IN LAGRANGIAN STOCHASTIC-MODELS OF TURBULENT DISPERSION [J].
SAWFORD, BL .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1991, 3 (06) :1577-1586
[5]   Dynamical origins for non-Gaussian vorticity distributions in turbulent flows [J].
Wilczek, Michael ;
Friedrich, Rudolf .
PHYSICAL REVIEW E, 2009, 80 (01)