Elevated salicylic acid levels conferred by increased expression of ISOCHORISMATE SYNTHASE 1 contribute to hyperaccumulation of SUMO1 conjugates in the Arabidopsis mutant early in short days 4

被引:43
作者
Villajuana-Bonequi, Mitzi [1 ]
Elrouby, Nabil [1 ]
Nordstroem, Karl [1 ]
Griebel, Thomas [1 ]
Bachmair, Andreas [1 ]
Coupland, George [1 ]
机构
[1] Max Planck Inst Plant Breeding Res, D-50829 Cologne, Germany
基金
奥地利科学基金会;
关键词
early in short days 4; sumoylation; isochorismate synthase I; salicylic acid; flowering time; Arabidopsis thaliana; SYSTEMIC ACQUIRED-RESISTANCE; STRESS RESPONSES; E3; LIGASE; FLOWERING-TIME; ABSCISIC-ACID; PLANT DEFENSE; UBIQUITIN LIGASE; INNATE IMMUNITY; PROTEINS; SUMOYLATION;
D O I
10.1111/tpj.12549
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Post-translational modification of proteins by attachment of small ubiquitin-like modifier (SUMO) is essential for plant growth and development. Mutations in the SUMO protease early in short days 4 (ESD4) cause hyperaccumulation of conjugates formed between SUMO and its substrates, and phenotypically are associated with extreme early flowering and impaired growth. We performed a suppressor mutagenesis screen of esd4 and identified a series of mutants called suppressor of esd4 (sed), which delay flowering, enhance growth and reduce hyperaccumulation of SUMO conjugates. Genetic mapping and genome sequencing indicated that one of these mutations (sed111) is in the gene salicylic acid induction-deficient 2 (SID2), which encodes ISOCHORISMATE SYNTHASE I, an enzyme required for biosynthesis of salicylic acid (SA). Analyses showed that compared with wild-type plants, esd4 contains higher levels of SID2 mRNA and about threefold more SA, whereas sed111 contains lower SA levels. Other sed mutants also contain lower SA levels but are not mutant for SID2, although most reduce SID2 mRNA levels. Therefore, higher SA levels contribute to the small size, early flowering and elevated SUMO conjugate levels of esd4. Our results support previous data indicating that SUMO homeostasis influences SA biosynthesis in wild-type plants, and also demonstrate that elevated levels of SA strongly increase the abundance of SUMO conjugates.
引用
收藏
页码:206 / 219
页数:14
相关论文
共 68 条
[1]   ASSIGNMENT OF 30 MICROSATELLITE LOCI TO THE LINKAGE MAP OF ARABIDOPSIS [J].
BELL, CJ ;
ECKER, JR .
GENOMICS, 1994, 19 (01) :137-144
[2]   A rapid and versatile combined DNA/RNA extraction protocol and its application to the analysis of a novel DNA marker set polymorphic between Arabidopsis thaliana ecotypes Col-0 and Landsberg erecta [J].
Berendzen, Kenneth ;
Searle, Iain ;
Ravenscroft, Dean ;
Koncz, Csaba ;
Batschauer, Alfred ;
Coupland, George ;
Somssich, Imre E. ;
Uelker, Bekir .
PLANT METHODS, 2005, 1 (1)
[3]   SNAP: predict effect of non-synonymous polymorphisms on function [J].
Bromberg, Yana ;
Rost, Burkhard .
NUCLEIC ACIDS RESEARCH, 2007, 35 (11) :3823-3835
[4]   Substrates Related to Chromatin and to RNA-Dependent Processes Are Modified by Arabidopsis SUMO Isoforms That Differ in a Conserved Residue with Influence on Desumoylation [J].
Budhiraja, Ruchika ;
Hermkes, Rebecca ;
Mueller, Stefan ;
Schmidt, Juergen ;
Colby, Thomas ;
Panigrahi, Kishore ;
Coupland, George ;
Bachmair, Andreas .
PLANT PHYSIOLOGY, 2009, 149 (03) :1529-1540
[5]   The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats [J].
Cao, H ;
Glazebrook, J ;
Clarke, JD ;
Volko, S ;
Dong, XN .
CELL, 1997, 88 (01) :57-63
[6]   The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses [J].
Catala, Rafael ;
Ouyang, Jian ;
Abreu, Isabel A. ;
Hu, Yuxin ;
Seo, Haksoo ;
Zhang, Xiuren ;
Chua, Nam-Hai .
PLANT CELL, 2007, 19 (09) :2952-2966
[7]   ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 Repress SALICYLIC ACID INDUCTION DEFICIENT2 Expression to Negatively Regulate Plant Innate Immunity in Arabidopsis [J].
Chen, Huamin ;
Xue, Li ;
Chintamanani, Satya ;
Germain, Hugo ;
Lin, Huiqiong ;
Cui, Haitao ;
Cai, Run ;
Zuo, Jianru ;
Tang, Xiaoyan ;
Li, Xin ;
Guo, Hongwei ;
Zhou, Jian-Min .
PLANT CELL, 2009, 21 (08) :2527-2540
[8]   Specific Domain Structures Control Abscisic Acid-, Salicylic Acid-, and Stress-Mediated SIZ1 Phenotypes [J].
Cheong, Mi Sun ;
Park, Hyeong Cheol ;
Hong, Mi Ju ;
Lee, Jiyoung ;
Choi, Wonkyun ;
Jin, Jing Bo ;
Bohnert, Hans J. ;
Lee, Sang Yeol ;
Bressan, Ray A. ;
Yun, Dae-Jin .
PLANT PHYSIOLOGY, 2009, 151 (04) :1930-1942
[9]   SUMO-conjugating and SUMO-deconjugating enzymes from Arabidopsis [J].
Colby, Thomas ;
Matthaei, Anett ;
Boeckelmann, Astrid ;
Stuible, Hans-Peter .
PLANT PHYSIOLOGY, 2006, 142 (01) :318-332
[10]   Small Ubiquitin-Like Modifier Proteases OVERLY TOLERANT TO SALT1 and-2 Regulate Salt Stress Responses in Arabidopsis [J].
Conti, Lucio ;
Price, Gillian ;
O'Donnell, Elizabeth ;
Schwessinger, Benjamin ;
Dominy, Peter ;
Sadanandom, Ari .
PLANT CELL, 2008, 20 (10) :2894-2908