UNIT VECTOR FIELDS ON REAL SPACE FORMS WHICH ARE HARMONIC MAPS

被引:8
作者
Perrone, Domenico [1 ]
机构
[1] Univ Salento, Dipartimento Matemat Ennio De Giorgi, I-73100 Lecce, Italy
关键词
harmonic maps; unit Killing vector fields; real space forms; Riemannian g-natural metrics; RIEMANNIAN-MANIFOLDS; BUNDLES; METRICS; 3-MANIFOLDS; LAPLACIAN; STABILITY; MAPPINGS; SPHERES; VOLUME; ENERGY;
D O I
10.2140/pjm.2009.239.89
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1998, Han and Yim proved that the Hopf vector fields, namely, the unit Killing vector fields, are the unique unit vector fields on the unit sphere S-3 that define harmonic maps from S-3 to ((TS3)-S-1, (G) over tilde (s)), where (G) over tilde (s) is the Sasaki metric. In this paper, by using a different method, we get an analogue of Han and Yim's theorem for a Riemannian three-manifold with constant sectional curvature k not equal 0. An immediate consequence is that there does not exist a unit vector field on the hyperbolic three-space that defines a harmonic map. We also extend this result for Riemannian (2n + 1)-manifolds (M, g) of constant sectional curvature k > 0 with pi(1)(M) not equal 0.
引用
收藏
页码:89 / 104
页数:16
相关论文
共 29 条
[1]  
ABBASSI KMT, 2008, DIFF GEOM APPL
[2]  
ABBASSI KMT, 2007, ARXIV07103668V1
[3]   g-natural contact metrics on unit tangent sphere bundles [J].
Abbassi, M. T. K. ;
Calvaruso, G. .
MONATSHEFTE FUR MATHEMATIK, 2007, 151 (02) :89-109
[4]   On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds [J].
Abbassi, MTK ;
Sarih, M .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2005, 22 (01) :19-47
[5]  
[Anonymous], 2002, RIEMANNIAN GEOMETRY
[6]   Harmonic sections of Riemannian vector bundles, and metrics of Cheeger-Gromoll type [J].
Benyounes, M. ;
Loubeau, E. ;
Wood, C. M. .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2007, 25 (03) :322-334
[7]  
BENYOUNES M, 2007, ARXIVMATHDG0703060V1
[8]  
Besse A. L., 1987, ERGEBNISSE MATH IHRE, DOI [10.1007/978-3-540-74311-8, DOI 10.1007/978-3-540-74311-8]
[9]  
Brito F, 2004, OSAKA J MATH, V41, P533
[10]   Total bending of flows with mean curvature correction [J].
Brito, FGB .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2000, 12 (02) :157-163