An electrochemical system for efficiently harvesting low-grade heat energy

被引:411
作者
Lee, Seok Woo [1 ]
Yang, Yuan [2 ]
Lee, Hyun-Wook [1 ]
Ghasemi, Hadi [2 ]
Kraemer, Daniel [2 ]
Chen, Gang [2 ]
Cui, Yi [1 ,3 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[3] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
基金
新加坡国家研究基金会;
关键词
LONG CYCLE LIFE; POWER; BATTERY; THERMOELECTRICS; PERFORMANCE;
D O I
10.1038/ncomms4942
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Efficient and low-cost thermal energy-harvesting systems are needed to utilize the tremendous low-grade heat sources. Although thermoelectric devices are attractive, its efficiency is limited by the relatively low figure-of-merit and low-temperature differential. An alternative approach is to explore thermodynamic cycles. Thermogalvanic effect, the dependence of electrode potential on temperature, can construct such cycles. In one cycle, an electrochemical cell is charged at a temperature and then discharged at a different temperature with higher cell voltage, thereby converting heat to electricity. Here we report an electrochemical system using a copper hexacyanoferrate cathode and a Cu/Cu2+ anode to convert heat into electricity. The electrode materials have low polarization, high charge capacity, moderate temperature coefficients and low specific heat. These features lead to a high heat-to-electricity energy conversion efficiency of 5.7% when cycled between 10 and 60 degrees C, opening a promising way to utilize low-grade heat.
引用
收藏
页数:6
相关论文
共 23 条
[11]   THERMOELECTRIC EFFECTS IN ELECTROCHEMICAL SYSTEMS - NONCONVENTIONAL THERMOGALVANIC CELLS [J].
KUZMINSKII, YV ;
ZASUKHA, VA ;
KUZMINSKAYA, GY .
JOURNAL OF POWER SOURCES, 1994, 52 (02) :231-242
[12]   Energy scavenging for mobile and wireless electronics [J].
Paradiso, JA ;
Starner, T .
IEEE PERVASIVE COMPUTING, 2005, 4 (01) :18-27
[13]   A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage [J].
Pasta, Mauro ;
Wessells, Colin D. ;
Huggins, Robert A. ;
Cui, Yi .
NATURE COMMUNICATIONS, 2012, 3
[14]   High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys [J].
Poudel, Bed ;
Hao, Qing ;
Ma, Yi ;
Lan, Yucheng ;
Minnich, Austin ;
Yu, Bo ;
Yan, Xiao ;
Wang, Dezhi ;
Muto, Andrew ;
Vashaee, Daryoosh ;
Chen, Xiaoyuan ;
Liu, Junming ;
Dresselhaus, Mildred S. ;
Chen, Gang ;
Ren, Zhifeng .
SCIENCE, 2008, 320 (5876) :634-638
[15]   A REVIEW OF POWER-GENERATION IN AQUEOUS THERMOGALVANIC CELLS [J].
QUICKENDEN, TI ;
MUA, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (11) :3985-3994
[16]   Energy harvesting, reuse and upgrade to reduce primary energy usage in the USA [J].
Rattner, Alexander S. ;
Garimella, Srinivas .
ENERGY, 2011, 36 (10) :6172-6183
[17]   THERMOELECTRICITY AND THERMOELECTRIC POWER GENERATION [J].
ROSI, FD .
SOLID-STATE ELECTRONICS, 1968, 11 (09) :833-&
[18]  
Serth RW, 2007, PROCESS HEAT TRANSFER: PRINCIPLES AND APPLICATIONS, P1
[19]   Complex thermoelectric materials [J].
Snyder, G. Jeffrey ;
Toberer, Eric S. .
NATURE MATERIALS, 2008, 7 (02) :105-114
[20]   The Effect of Insertion Species on Nanostructured Open Framework Hexacyanoferrate Battery Electrodes [J].
Wessells, Colin D. ;
Peddada, Sandeep V. ;
McDowell, Matthew T. ;
Huggins, Robert A. ;
Cui, Yi .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (02) :A98-A103