An electrochemical system for efficiently harvesting low-grade heat energy

被引:411
作者
Lee, Seok Woo [1 ]
Yang, Yuan [2 ]
Lee, Hyun-Wook [1 ]
Ghasemi, Hadi [2 ]
Kraemer, Daniel [2 ]
Chen, Gang [2 ]
Cui, Yi [1 ,3 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[3] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
基金
新加坡国家研究基金会;
关键词
LONG CYCLE LIFE; POWER; BATTERY; THERMOELECTRICS; PERFORMANCE;
D O I
10.1038/ncomms4942
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Efficient and low-cost thermal energy-harvesting systems are needed to utilize the tremendous low-grade heat sources. Although thermoelectric devices are attractive, its efficiency is limited by the relatively low figure-of-merit and low-temperature differential. An alternative approach is to explore thermodynamic cycles. Thermogalvanic effect, the dependence of electrode potential on temperature, can construct such cycles. In one cycle, an electrochemical cell is charged at a temperature and then discharged at a different temperature with higher cell voltage, thereby converting heat to electricity. Here we report an electrochemical system using a copper hexacyanoferrate cathode and a Cu/Cu2+ anode to convert heat into electricity. The electrode materials have low polarization, high charge capacity, moderate temperature coefficients and low specific heat. These features lead to a high heat-to-electricity energy conversion efficiency of 5.7% when cycled between 10 and 60 degrees C, opening a promising way to utilize low-grade heat.
引用
收藏
页数:6
相关论文
共 23 条
[1]  
Bejan A., 2003, Heat transfer handbook, V1
[2]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[3]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[4]  
Chum H. L., 1981, REV THERMALLY REGENE
[5]   Thermoelectric cooling and power generation [J].
DiSalvo, FJ .
SCIENCE, 1999, 285 (5428) :703-706
[6]   Liquid Thermoelectrics: Review of Recent And Limited New Data of Thermogalvanic Cell Experiments [J].
Gunawan, Andrey ;
Lin, Chao-Han ;
Buttry, Daniel A. ;
Mujica, Vladimiro ;
Taylor, Robert A. ;
Prasher, Ravi S. ;
Phelan, Patrick E. .
NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2013, 17 (04) :304-323
[7]   ELECTROCHEMICAL HEAT ENGINE FOR DIRECT SOLAR-ENERGY CONVERSION [J].
HAMMOND, RH ;
RISEN, WM .
SOLAR ENERGY, 1979, 23 (05) :443-449
[8]  
Hesson J. C., 1967, REGENERATIVE EMF CEL, V64, P82
[9]   Harvesting Waste Thermal Energy Using Carbon-Nanotube-Based Thermo-Electrochemical Cell [J].
Hu, Renchong ;
Cola, Baratunde A. ;
Haram, Nanda ;
Barisci, Joseph N. ;
Lee, Sergey ;
Stoughton, Stephanie ;
Wallace, Gordon ;
Too, Chee ;
Thomas, Michael ;
Gestos, Adrian ;
dela Cruz, Marilou E. ;
Ferraris, John P. ;
Zakhidov, Anvar A. ;
Baughman, Ray H. .
NANO LETTERS, 2010, 10 (03) :838-846
[10]  
Kraemer D, 2011, NAT MATER, V10, P532, DOI [10.1038/NMAT3013, 10.1038/nmat3013]