Nitrogen Doping of Carbon Nanoelectrodes for Enhanced Control of DNA Translocation Dynamics

被引:10
作者
Jung, Sang Won [1 ,3 ]
Kim, Han Seul [2 ,4 ]
Cho, Art E. [1 ]
Kim, Yong-Hoon [2 ]
机构
[1] Korea Univ, Dept Bioinformat, Sejong Campus,2511 Sejong Ro, Sejong 30019, South Korea
[2] Korea Adv Inst Sci & Technol, Grad Sch Energy Environm Water & Sustainabil, 291 Deahak Ro, Daejeon 34141, South Korea
[3] DGIST, Ctr Supercomp & Big Data, 333 Techno Jungang Daero, Daegu 42988, South Korea
[4] Korea Inst Sci & Technol Informat, Div Natl Supercomp Res & Dev, 245 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
DNA sequencing; capped carbon nanotubes; heteroatom doping; density functional theory calculations; molecular dynamics simulations; SOLID-STATE NANOPORE; TRANSVERSE ELECTRONIC TRANSPORT; EMPIRICAL FORCE-FIELD; GRAPHENE NANOPORES; MOLECULAR-DYNAMICS; NUCLEIC-ACIDS; RECENT PROGRESS; DOPED GRAPHENE; NANOTUBES; CONDUCTANCE;
D O I
10.1021/acsami.8b04453
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Controlling the dynamics of DNA translocation is a central issue in the emerging nanopore-based DNA sequencing. To address the potential of heteroatom doping of carbon nanostructures and for achieving this goal, herein, we carry out atomistic molecular dynamics simulations for single-stranded DNAs translocating between two pristine or doped carbon nanotube (CNT) electrodes. Specifically, we consider the substitutional nitrogen doping of capped CNT (capCNT) electrodes and perform two types of molecular dynamics simulations for the entrapped and translocating single stranded DNAs. We find that the substitutional nitrogen doping of capCNTs facilitates and stabilizes the edge-on nucleobase configurations rather than the original face-on ones and slows down the DNA translocation speed by establishing hydrogen bonds between the N dopant atoms and nucleobases. Due to the enhanced interactions between DNAs and N-doped capCNTs, the duration time of nucleobases within the nanogap was extended by up to similar to 300%. Given the possibility to be combined with the extrinsic light or gate voltage modulation methods, the current work demonstrates that the substitutional nitrogen doping is a promising direction for the control of DNA translocation dynamics through a nanopore or nanogap, based of carbon nanomaterials.
引用
收藏
页码:18227 / 18236
页数:10
相关论文
共 70 条
[1]   Microscopic kinetics of DNA translocation through synthetic nanopores [J].
Aksimentiev, A ;
Heng, JB ;
Timp, G ;
Schulten, K .
BIOPHYSICAL JOURNAL, 2004, 87 (03) :2086-2097
[2]   Structures and interaction energies of stacked graphene-nucleobase complexes [J].
Antony, Jens ;
Grimme, Stefan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (19) :2722-2729
[3]   Dynamic and Electronic Transport Properties of DNA Translocation through Graphene Nanopores [J].
Avdoshenko, Stanislav M. ;
Nozaki, Daijiro ;
da Rocha, Claudia Gomes ;
Gonzalez, Jhon W. ;
Lee, Myeong H. ;
Gutierrez, Rafael ;
Cuniberti, Gianaurelio .
NANO LETTERS, 2013, 13 (05) :1969-1976
[4]   Slowing DNA Transport Using Graphene-DNA Interactions [J].
Banerjee, Shouvik ;
Wilson, James ;
Shim, Jiwook ;
Shankla, Manish ;
Corbin, Elise A. ;
Aksimentiev, Aleksei ;
Bashir, Rashid .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (06) :936-946
[5]   FINITE REPRESENTATION OF AN INFINITE BULK SYSTEM - SOLVENT BOUNDARY POTENTIAL FOR COMPUTER-SIMULATIONS [J].
BEGLOV, D ;
ROUX, B .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (12) :9050-9063
[6]   First-principles study of high-conductance DNA sequencing with carbon nanotube electrodes [J].
Chen, X. ;
Rungger, I. ;
Pemmaraju, C. D. ;
Schwingenschloegl, U. ;
Sanvito, S. .
PHYSICAL REVIEW B, 2012, 85 (11)
[7]   Carbon nanobuds based on carbon nanotube caps: a first-principles study [J].
Choi, Ji I. L. ;
Kim, Hyo Seok ;
Kim, Han Seul ;
Lee, Ga In ;
Kang, Jeung Ku ;
Kim, Yong-Hoon .
NANOSCALE, 2016, 8 (04) :2343-2349
[8]   PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS [J].
DARDEN, T ;
YORK, D ;
PEDERSEN, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10089-10092
[9]   Slowing DNA Translocation through Nanopores Using a Solution Containing Organic Salts [J].
de Zoysa, Ranulu Samanthi S. ;
Jayawardhana, Dilani A. ;
Zhao, Qitao ;
Wang, Deqiang ;
Armstrong, Daniel W. ;
Guan, Xiyun .
JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (40) :13332-13336
[10]  
Di Fiori N, 2013, NAT NANOTECHNOL, V8, P946, DOI [10.1038/NNANO.2013.221, 10.1038/nnano.2013.221]