Weak subsolutions to complex Monge-Ampere equations

被引:4
作者
Guedj, Vincent [1 ]
Lu, Chinh H. [2 ]
Zeriahi, Ahmed [1 ]
机构
[1] Univ Toulouse, Inst Math Toulouse, CNRS, 118 Route Narbonne, F-31400 Toulouse, France
[2] Univ Paris Sud, CNRS, Univ Paris Saclay, Lab Math Orsay, F-91405 Orsay, France
关键词
complex Mange-Ampere equation; weak subsolutions; pluripotential theory; VARIATIONAL APPROACH; DIRICHLET PROBLEM; VISCOSITY; STABILITY;
D O I
10.2969/jmsj/79677967
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compare various notions of weak subsolutions to degenerate complex Monge-Ampere equations, showing that they all coincide. This allows us to give an alternative proof of mixed Monge-Ampere inequalities due to Kolodziej and Dinew.
引用
收藏
页码:727 / 738
页数:12
相关论文
共 18 条
[1]  
Ahag P, 2012, MATH SCAND, V110, P235
[2]  
[Anonymous], MATH Z
[3]   DIRICHLET PROBLEM FOR A COMPLEX MONGE-AMPERE EQUATION [J].
BEDFORD, E ;
TAYLOR, BA .
INVENTIONES MATHEMATICAE, 1976, 37 (01) :1-44
[4]   A NEW CAPACITY FOR PLURISUBHARMONIC-FUNCTIONS [J].
BEDFORD, E ;
TAYLOR, BA .
ACTA MATHEMATICA, 1982, 149 (1-2) :1-40
[5]  
Benelkourchi S., 2009, Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist., V86, P57
[6]   A VARIATIONAL APPROACH TO COMPLEX MONGE-AMPERE EQUATIONS [J].
Berman, Robert J. ;
Boucksom, Sebastien ;
Guedj, Vincent ;
Zeriahi, Ahmed .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2013, (117) :179-245
[7]  
Bocki Z., 1996, Ann. Sc. Norm. Sup. Pisa, V23, P721
[8]  
CEGRELL U, 1992, MICH MATH J, V39, P145
[9]   The equation of complex Monge-Ampere type and stability of solutions [J].
Cegrell, U ;
Kolodziej, S .
MATHEMATISCHE ANNALEN, 2006, 334 (04) :713-729
[10]   Pluricomplex energy [J].
Cegrell, U .
ACTA MATHEMATICA, 1998, 180 (02) :187-217