Novel PT-invariant solutions for a large number of real nonlinear equations

被引:12
作者
Khare, Avinash [1 ]
Saxena, Avadh [2 ,3 ]
机构
[1] Savitribai Phule Pune Univ, Dept Phys, Pune 411007, Maharashtra, India
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
关键词
Solitons; Nonlinear equations; PT-symmetry; PHASE-TRANSITION; THERMODYNAMICS;
D O I
10.1016/j.physleta.2015.12.007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a large number of real nonlinear equations, either continuous or discrete, integrable or nonintegrable, we show that whenever a real nonlinear equation admits a solution in terms of sechx, it also admits solutions in terms of the PT-invariant combinations sechx +/- i tanhx. Further, for a number of real nonlinear equations we show that whenever a nonlinear equation admits a solution in terms sech(2) x, it also admits solutions in terms of the PT-invariant combinations sech(2)x +/- i sechxtanhx. Besides, we show that similar results are also true in the periodic case involving Jacobi elliptic functions. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:856 / 862
页数:7
相关论文
共 31 条
  • [1] Abromowitz M., 2010, HDB MATH FUNCTIONS
  • [2] UNIFIED APPROACH TO INTERPRETATION OF DISPLACIVE AND ORDER-DISORDER SYSTEMS .2. DISPLACIVE SYSTEMS
    AUBRY, S
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (08) : 3392 - 3402
  • [3] Making sense of non-Hermitian Hamiltonians
    Bender, Carl M.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) : 947 - 1018
  • [4] PT-symmetric extension of the Korteweg-de Vries equation
    Bender, Carl M.
    Brody, Dorje C.
    Chen, Jun-Hua
    Furlan, Elisabetta
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (05) : F153 - F160
  • [5] Observation of PT phase transition in a simple mechanical system
    Bender, Carl M.
    Berntson, Bjorn K.
    Parker, David
    Samuel, E.
    [J]. AMERICAN JOURNAL OF PHYSICS, 2013, 81 (03) : 173 - 179
  • [6] Bender CM, 2009, PRAMANA-J PHYS, V73, P375, DOI 10.1007/s12043-009-0129-1
  • [7] Exact solitary wave solutions for a discrete λφ4 field theory in 1+1 dimensions -: art. no. 036605
    Cooper, F
    Khare, A
    Mihaila, B
    Saxena, A
    [J]. PHYSICAL REVIEW E, 2005, 72 (03):
  • [8] Cuevas-Maraver J., 2015, IEEE J SEL TOP QUANT, V22, P1
  • [9] Drazin P. G., 1989, Solitons: An Introduction, V2