The Quadrant Shrinking Method: A simple and efficient algorithm for solving tri-objective integer programs

被引:45
作者
Boland, Natashia [2 ]
Charkhgard, Hadi [1 ]
Savelsbergh, Martin [2 ]
机构
[1] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW, Australia
[2] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
关键词
Tri-objective integer programs; Quadrant shrinking method; Criterion space search method; Nondominated frontier;
D O I
10.1016/j.ejor.2016.03.035
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We present a new variant of the full 2-split algorithm, the Quadrant Shrinking Method (QSM), for finding all nondominated points of a tri-objective integer program. The algorithm is easy to implement and solves at most 3 vertical bar Y-N vertical bar +1 single-objective integer programs when computing the nondominated frontier, where Y-N is the set of all nondominated points. A computational study demonstrates the efficacy of QSM. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:873 / 885
页数:13
相关论文
共 15 条
[1]   BICRITERIA TRANSPORTATION PROBLEM [J].
ANEJA, YP ;
NAIR, KPK .
MANAGEMENT SCIENCE, 1979, 25 (01) :73-78
[2]  
Belotti P., 2013, BRANCH AND BOUND ALG
[3]   The L-shape search method for triobjective integer programming [J].
Boland N. ;
Charkhgard H. ;
Savelsbergh M. .
Mathematical Programming Computation, 2016, 8 (2) :217-251
[4]   A Criterion Space Search Algorithm for Biobjective Integer Programming: The Balanced Box Method [J].
Boland, Natashia ;
Charkhgard, Hadi ;
Savelsbergh, Martin .
INFORMS JOURNAL ON COMPUTING, 2015, 27 (04) :735-754
[5]  
Brunsch T., 2014, Theory of Computing, V10, P237, DOI [10.4086/toc.2014.v010a010, DOI 10.4086/TOC.2014.V010A010]
[6]  
Dachert K, 2014, J GLOBAL OPTIM, V1-34
[7]   K-PPM: A new exact method to solve multi-objective combinatorial optimization problems [J].
Dhaenens, C. ;
Lemesre, J. ;
Talbi, E. G. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 200 (01) :45-53
[8]   Benchmarking optimization software with performance profiles [J].
Dolan, ED ;
Moré, JJ .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :201-213
[9]   A discussion of scalarization techniques for multiple objective integer programming [J].
Ehrgott, Matthias .
ANNALS OF OPERATIONS RESEARCH, 2006, 147 (01) :343-360
[10]   A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems [J].
Kirlik, Gokhan ;
Sayin, Serpil .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 232 (03) :479-488