Moderate deviations for longest increasing subsequences:: The lower tail

被引:21
|
作者
Löwe, M
Merkl, F
Rolles, S
机构
[1] Univ Nijmegen, Dept Math, NL-6525 ED Nijmegen, Netherlands
[2] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
Ulam's problem; random permutations; moderate deviations; Poissonization;
D O I
10.1023/A:1020649006254
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive a moderate deviation principle for the lower tail probabilities of the length of a longest increasing subsequence in a random permutation. It refers to the regime between the lower tail large deviation regime and the central limit regime. The present article together with the upper tail moderate deviation principle in Ref. 12 yields a complete picture for the whole moderate deviation regime. Other than in Ref. 12, we can directly apply estimates by Baik, Deift, and Johansson,((3)) who obtained a (non-standard) Central Limit Theorem for the same quantity.
引用
收藏
页码:1031 / 1047
页数:17
相关论文
共 50 条