A 73μW single channel Photoplethysmography-based Blood Pressure Estimation Processor

被引:0
作者
Rehman, Abdul [1 ]
Bin Altaf, Muhammad Awais [1 ]
Saadeh, Wala [1 ]
机构
[1] Lahore Univ Management Sci, Lahore, Pakistan
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22) | 2022年
关键词
blood pressure (BP); photoplethysmography (PPG); machine learning (ML); regression; PULSE TRANSIT-TIME; SOC;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Blood pressure (BP) is considered one of the key vital signs that provide valuable medical information about cardiovascular activity. Conventionally, cuff-based devices are used to measure BP which limits their usage for continuous monitoring. This paper presents a cuff-less BP estimation processor using photoplethysmography (PPG) signals with a Deep Neural Network (DNN). Spectral and temporal features are extracted from the PPG signals and then used to train and evaluate the machine learning (ML) algorithms. The proposed algorithm is evaluated using the MIMIC II database for systolic blood pressure (SBP) and diastolic blood pressure (SBP) estimation. The proposed BP estimation processor is implemented using a 180nm CMOS process with an area of 3.45mm2 and consumes 73 mu W. It achieves a mean absolute error in systolic BP of 0.0657 +/- 4.7 mmHg and diastolic BP of 0.792 +/- 4.61 mmHg which outperforms the state- of-the-art BP estimation algorithms.
引用
收藏
页码:2318 / 2322
页数:5
相关论文
共 26 条
[1]  
Abubakar SM, 2018, IEEE ASIAN SOLID STA, P267, DOI 10.1109/ASSCC.2018.8579263
[2]  
Abubakar SM, 2018, DES AUT TEST EUROPE, P961, DOI 10.23919/DATE.2018.8342148
[3]  
[Anonymous], 2019, BIOMEDICAL SIGNAL PR, DOI DOI 10.1093/NAR/GKZ501
[4]   A 10.13μJ/Classification 2-Channel Deep Neural Network Based SoC for Negative Emotion Outburst Detection of Autistic Children [J].
Aslam, Abdul Rehman ;
Bin Altaf, Muhammad Awais .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2021, 15 (05) :1039-1052
[5]   Noninvasive cuffless blood pressure estimation using pulse transit time and Hilbert-Huang transform [J].
Choi, Younhee ;
Zhang, Qiao ;
Ko, Seokbum .
COMPUTERS & ELECTRICAL ENGINEERING, 2013, 39 (01) :103-111
[6]  
Duan K., 2016, PMID
[7]   PULSE TRANSIT-TIME AS AN INDICATOR OF ARTERIAL BLOOD-PRESSURE [J].
GEDDES, LA ;
VOELZ, MH ;
BABBS, CF ;
BOURLAND, JD ;
TACKER, WA .
PSYCHOPHYSIOLOGY, 1981, 18 (01) :71-74
[8]  
Handler Joel, 2009, Perm J, V13, P51
[9]  
Hasanzadeh N., 2020, IEEE SENSORS J, V20
[10]  
Hina A, 2019, IEEE INT SYMP CIRC S, DOI [DOI 10.1109/ISCAS.2019.8702747, DOI 10.1109/iscas.2019.8702747]