Equilibrium problems under relaxed α-monotonicity on Hadamard manifolds

被引:2
作者
Jana, S. [1 ]
机构
[1] Narajole Raj Coll, Dept Math, West Midnapore 721211, W Bengal, India
关键词
Hadamard manifolds; Variational inequalities; Equilibrium problems; KKM mappings; PROXIMAL POINT ALGORITHM; VARIATIONAL-INEQUALITIES; VECTOR-FIELDS;
D O I
10.1007/s12215-021-00595-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the existence of solutions of both equilibrium problems and mixed equilibrium problems on Hadamard manifolds. Under relaxed alpha-pseudomonotonicity assumption on the underlying bifunction we prove that the solution set of the equilibrium problem is nonempty. We also provide the existence of solution of mixed equilibrium problems with relaxed alpha-monotonicity. The results presented in this paper generalize and improve some known results given in literature, see for example (Colao et al. in J Math Anal Appl 388:61-77, 2012; Jana and Nahak in Rend Circ Mat Palermo(2) 65(1):97109, 2016; Mahato and Nahak in OPSEARCH, 2013.
引用
收藏
页码:361 / 372
页数:12
相关论文
共 22 条
[1]   Generalized monotone bifunctions and equilibrium problems [J].
Bianchi, M ;
Schaible, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 90 (01) :31-43
[2]  
Blum E., 1994, Math. Student, V63, P123
[3]   Equilibrium problems in Hadamard manifolds [J].
Colao, Vittorio ;
Lopez, Genaro ;
Marino, Giuseppe ;
Martin-Marquez, Victoria .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (01) :61-77
[4]   Convex- and monotone-transformable mathematical programming problems and a proximal-like point method [J].
Da Cruz Neto, J. X. ;
Ferreira, O. P. ;
Perez, L. R. Lucambio ;
Nemeth, S. Z. .
JOURNAL OF GLOBAL OPTIMIZATION, 2006, 35 (01) :53-69
[5]   Proximal point algorithm on Riemannian manifolds [J].
Ferreira, OP ;
Oliveira, PR .
OPTIMIZATION, 2002, 51 (02) :257-270
[6]   Mixed equilibrium problems on Hadamard manifolds [J].
Jana S. ;
Nahak C. .
Rendiconti del Circolo Matematico di Palermo (1952 -), 2016, 65 (1) :97-109
[7]  
Jost J., 1997, Lectures in Mathematics ETH Zrich
[8]   Monotone vector fields and the proximal point algorithm on Hadamard manifolds [J].
Li, Chong ;
Lopez, Genaro ;
Martin-Marquez, Victoria .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 79 :663-683
[9]   Existence of solutions for variational inequalities on Riemannian manifolds [J].
Li, Shu-Long ;
Li, Chong ;
Liou, Yeong-Cheng ;
Yao, Jen-Chih .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (11) :5695-5706
[10]  
LI XB, OPTIM LETT