Plasma-graphene interaction and its effects on nanoscale patterning

被引:29
作者
Harpale, Abhilash [1 ]
Panesi, Marco [1 ]
Chew, Huck Beng [1 ]
机构
[1] Univ Illinois, Dept Aerosp Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
WATER DESALINATION; HYDROGEN; REAXFF;
D O I
10.1103/PhysRevB.93.035416
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Scalable and precise nanopatterning of graphene is an essential step for graphene-based device fabrication. Hydrogen-plasma reactions have been shown to narrow graphene only from the edges, or to selectively produce circular or hexagonal holes in the basal plane of graphene, but the underlying plasma-graphene chemistry is unknown. Here, we study the hydrogen-plasma etching of monolayer graphene supported on SiO2 substrates across the range of plasma ion energies using scale-bridging molecular dynamics (MD) simulations based on reactive force-field potential. Our results uncover distinct etching mechanisms, operative within narrow ion energy windows, which fully explain the differing plasma-graphene reactions observed experimentally. Specific ion energy ranges are demonstrated for stable isotropic (similar to 2 eV) versus anisotropic hole growth (similar to 20-30 eV) within the basal plane of graphene, as well as for pure edge etching of graphene (similar to 1 eV). Understanding the complex plasma-graphene chemistry opens up a means for controlled patterning of graphene nanostructures.
引用
收藏
页数:10
相关论文
共 38 条
[1]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[2]   Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations [J].
Boukhvalov, D. W. ;
Katsnelson, M. I. ;
Lichtenstein, A. I. .
PHYSICAL REVIEW B, 2008, 77 (03)
[3]   Theory of Auger neutralization and deexcitation of slow ions at metal surfaces [J].
Cazalilla, MA ;
Lorente, N ;
Muino, RD ;
Gauyacq, JP ;
Teillet-Billy, D ;
Echenique, PM .
PHYSICAL REVIEW B, 1998, 58 (20) :13991-14006
[4]   Water Desalination across Nanoporous Graphene [J].
Cohen-Tanugi, David ;
Grossman, Jeffrey C. .
NANO LETTERS, 2012, 12 (07) :3602-3608
[5]   Semiconducting Electronic Property of Graphene Adsorbed on (0001) Surfaces of SiO2 [J].
Cuong, Nguyen Thanh ;
Otani, Minoru ;
Okada, Susumu .
PHYSICAL REVIEW LETTERS, 2011, 106 (10)
[6]   BRANCHING-PROCESSES IN THE DISSOCIATIVE RECOMBINATION OF H-3(+) [J].
DATZ, S ;
SUNDSTROM, G ;
BIEDERMANN, C ;
BROSTROM, L ;
DANARED, H ;
MANNERVIK, S ;
MOWAT, JR ;
LARSSON, M .
PHYSICAL REVIEW LETTERS, 1995, 74 (06) :896-899
[7]   Etching mechanisms of graphene nanoribbons in downstream H2 plasmas: insights from molecular dynamics simulations [J].
Davydova, A. ;
Despiau-Pujo, E. ;
Cunge, G. ;
Graves, D. B. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (19) :195202
[8]   Elementary processes of H2 plasma-graphene interaction: A combined molecular dynamics and density functional theory study [J].
Despiau-Pujo, E. ;
Davydova, A. ;
Cunge, G. ;
Delfour, L. ;
Magaud, L. ;
Graves, D. B. .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (11)
[9]   Extreme Mono layer-Selectivity of Hydrogen-Plasma Reactions with Graphene [J].
Diankov, Georgi ;
Neumann, Michael ;
Goldhaber-Gordon, David .
ACS NANO, 2013, 7 (02) :1324-1332
[10]   Bandgap Opening by Patterning Graphene [J].
Dvorak, Marc ;
Oswald, William ;
Wu, Zhigang .
SCIENTIFIC REPORTS, 2013, 3