Epoxy nanocomposites - fracture and toughening mechanisms

被引:654
作者
Wetzel, Bernd [1 ]
Rosso, Patrick [1 ]
Haupert, Frank [1 ]
Friedrich, Klaus [1 ]
机构
[1] Kaiserlautern Univ Technol, Inst Verbundwerkstoffe GmbH, Inst Composite Mat, D-67653 Kaiserslautern, Germany
关键词
nanoparticles; polymer; mechanical properties; toughening mechanisms;
D O I
10.1016/j.engfracmech.2006.05.018
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This study focuses to provide information about reinforcing influences of nanoparticles exerted on the mechanical and fracture mechanical properties of epoxy resins, particularly with regard to fracture and toughening mechanisms. A comprehensive study was carried out on series of nanocomposites containing varying amounts of nanoparticles, either titanium dioxide (TiO2) or aluminium oxide (Al2O3) Nanocomposites were systematically produced by applying high (shear) energy during a controlled dispersion process, in order to reduce the size of agglomerates and to gain a homogeneous distribution of individual nanoparticles within the epoxy resin. The mechanical performance of the nanocomposites was then characterized by flexural testing, dynamic mechanical analysis (DMA), and furthermore, by fracture mechanics approaches (LEFM) and fatigue crack growth testing (FCP). The microstructure of specimens and the corresponding fracture surfaces were examined by TEM, SEM and AFM techniques in order to identify the relevant fracture mechanisms involved, and to gain information about the dispersion quality of nanoparticles within the polymer. It was found that the presence of nanoparticles in epoxy induces various fracture mechanisms, e.g. crack deflection, plastic deformation, and crack pinning. At the same time, nanoparticles can overcome the drawbacks of traditional tougheners (e.g. glass beads or rubber particles) by simultaneously improving stiffness, strength and toughness of epoxy, without sacrificing thermo-mechanical properties. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2375 / 2398
页数:24
相关论文
共 60 条
[1]  
[Anonymous], MECH PROPERTIES POLY
[2]   Toughenability of polymers [J].
Argon, AS ;
Cohen, RE .
POLYMER, 2003, 44 (19) :6013-6032
[3]   Role of particle cavitation in rubber-toughened epoxies .1. Microvoid toughening [J].
Bagheri, R ;
Pearson, RA .
POLYMER, 1996, 37 (20) :4529-4538
[4]   Role of particle cavitation in rubber-toughened epoxies: II. Inter-particle distance [J].
Bagheri, R ;
Pearson, RA .
POLYMER, 2000, 41 (01) :269-276
[5]  
BAGHERI R, 1995, POLYMER, V36, P4883
[6]  
Bansal P. P., 1972, Metallography, V5, P97, DOI 10.1016/0026-0800(72)90048-1
[7]   EXAMINATION OF THE PROCESSES OF DEFORMATION AND FRACTURE IN A SILICA-FILLED EPOXY-RESIN [J].
CANTWELL, WJ ;
SMITH, JW ;
KAUSCH, HH ;
KAISER, T .
JOURNAL OF MATERIALS SCIENCE, 1990, 25 (1B) :633-648
[8]   Toughening of epoxies through thermoplastic crack bridging [J].
Cardwell, BJ ;
Yee, AF .
JOURNAL OF MATERIALS SCIENCE, 1998, 33 (22) :5473-5484
[9]  
CASTELLANI L, 2001, ESIS, V28
[10]   Toughened carbon/epoxy composites made by using core/shell particles [J].
Day, RJ ;
Lovell, PA ;
Wazzan, AA .
COMPOSITES SCIENCE AND TECHNOLOGY, 2001, 61 (01) :41-56