Multi-valued control of port-Hamiltonian systems

被引:0
作者
Castanos, Fernando [1 ]
机构
[1] Cinvestav IPN, Dept Control Automat, Ciudad De Mexico 07360, Mexico
来源
REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL | 2022年 / 19卷 / 04期
关键词
Passivity-based control; Lagrangian and Hamiltonian systems; di fferential inclusions; robust controller synthesis; controller constraints and structure; DISSIPATIVE DYNAMICAL-SYSTEMS; LINEAR-SYSTEMS; CONTROLLED LAGRANGIANS; STABILIZATION; PASSIVITY; INTERCONNECTION; THEOREM;
D O I
10.4995/riai.2022/16814
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the use of multi-valued control laws for port-Hamiltonian systems. It is shown that if the multi-valued controller is monotonically increasing, then the control action is passive, the closed-loop system is well-defined, and robust output regulation is achieved. We propose a concrete methodology to construct maximal monotonically increasing controls. The scheme can be naturally applied to systems originally described by multi-valued operators, such as mechanical systems with unilateral constraints and circuits with diodes and transistors.
引用
收藏
页码:419 / 429
页数:11
相关论文
共 43 条
[1]  
Acary V, 2008, LECT NOTES APPL COMP, V35, P1, DOI 10.1007/978-3-540-75392-6
[2]  
[Anonymous], 1966, SIAM J. Control
[3]  
[Anonymous], 2002, COMM CONT E
[4]   STABILIZATION WITH RELAXED CONTROLS [J].
ARTSTEIN, Z .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (11) :1163-1173
[5]  
Bacciotti A., 2005, Liapunov Functions and Stability in Control Theory, V2nd
[6]   Controlled Lagrangians and the stabilization of mechanical systems II: Potential shaping [J].
Bloch, AM ;
Chang, DE ;
Leonard, NE ;
Marsden, JE .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (10) :1556-1571
[7]   Controlled Lagrangians and the stabilization of mechanical systems I: The first matching theorem [J].
Bloch, AM ;
Leonard, NE ;
Marsden, JE .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (12) :2253-2270
[8]  
Bonnefon O., 2011, Lecture Notes in Electrical Engineering, V69
[9]  
Boyd S., 1994, Linear Matrix Inequalities in System and Control Theory, DOI DOI 10.1137/1.9781611970777
[10]  
Brezis H., 1973, OPERATEURS MAXIMAUX