High-throughput ultrastructure screening using electron microscopy and fluorescent barcoding

被引:16
|
作者
Bykov, Yury S. [1 ,2 ,3 ]
Cohen, Nir [3 ]
Gabrielli, Natalia [1 ]
Manenschijn, Hetty [1 ,4 ,5 ,6 ]
Welsch, Sonja [1 ,7 ]
Chlanda, Petr [1 ,8 ]
Kukulski, Wanda [1 ,4 ,9 ]
Patil, Kiran R. [1 ]
Schuldiner, Maya [3 ]
Briggs, John A. G. [1 ,2 ,4 ]
机构
[1] European Mol Biol Lab, Struct & Computat Biol Unit, Heidelberg, Germany
[2] MRC, Struct Studies Div, Lab Mol Biol, Cambridge Biomed Campus, Cambridge, England
[3] Weizmann Inst Sci, Dept Mol Genet, Rehovot, Israel
[4] European Mol Biol Lab, Cell Biol & Biophys Unit, Heidelberg, Germany
[5] Univ Geneva, Dept Biochem, Geneva, Switzerland
[6] Univ Geneva, NCCR Chem Biol, Geneva, Switzerland
[7] Thermo Fisher Sci, Eindhoven, Netherlands
[8] Heidelberg Univ, BioQuant, Heidelberg, Germany
[9] MRC, Cell Biol Div, Lab Mol Biol, Cambridge Biomed Campus, Cambridge, England
基金
欧洲研究理事会; 英国医学研究理事会;
关键词
CORRELATED FLUORESCENCE; YEAST; CELL; LOCALIZATION; PROTEIN; GENE; TOMOGRAPHY; LIBRARIES; LIGHT; FORM;
D O I
10.1083/jcb.201812081
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Genetic screens using high-throughput fluorescent microscopes have generated large datasets, contributing many cell biological insights. Such approaches cannot tackle questions requiring knowledge of ultrastructure below the resolution limit of fluorescent microscopy. Electron microscopy (EM) reveals detailed cellular ultrastructure but requires time-consuming sample preparation, limiting throughput. Here we describe a robust method for screening by high-throughput EM. Our approach uses combinations of fluorophores as barcodes to uniquely mark each cell type in mixed populations and correlative light and EM (CLEM) to read the barcode of each cell before it is imaged by EM. Coupled with an easy-to-use software workflow for correlation, segmentation, and computer image analysis, our method, called "MultiCLEM," allows us to extract and analyze multiple cell populations from each EM sample preparation. We demonstrate several uses for MultiCLEM with 15 different yeast variants. The methodology is not restricted to yeast, can be scaled to higher throughput, and can be used in multiple ways to enable EM to become a powerful screening technique.
引用
收藏
页码:2797 / 2811
页数:15
相关论文
共 50 条
  • [21] Identification of selective inhibitors of uncharacterized enzymes by high-throughput screening with fluorescent activity-based probes
    Bachovchin, Daniel A.
    Brown, Steven J.
    Rosen, Hugh
    Cravatt, Benjamin F.
    NATURE BIOTECHNOLOGY, 2009, 27 (04) : 387 - 394
  • [22] Synthetic fluorescent MYC probe: Inhibitor binding site elucidation and development of a high-throughput screening assay
    Shirey, Ryan J.
    Hart, Jonathan R.
    Sridharan, BanuPriya
    Novick, Scott J.
    Turner, Lewis D.
    Zhou, Bin
    Nielsen, Alexander L.
    Eubanks, Lisa M.
    Ueno, Lynn
    Hixon, Mark S.
    Lairson, Luke L.
    Spicer, Timothy P.
    Scampavia, Louis D.
    Griffin, Patrick R.
    Vogt, Peter K.
    Janda, Kim D.
    BIOORGANIC & MEDICINAL CHEMISTRY, 2021, 42
  • [23] High-Throughput Screening for Engineered Nanoparticles That Enhance Photosynthesis Using Mesophyll Protoplasts
    Wang, Aodi
    Jin, Qijie
    Xu, Xin
    Miao, Aijun
    White, Jason C.
    Gardea-Torresdey, Jorge L.
    Ji, Rong
    Zhao, Lijuan
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2020, 68 (11) : 3382 - 3389
  • [24] High-Throughput In Vitro Screening of Changed Algal Community Structure Using the PhotoBiobox
    Cho, Dae-Hyun
    Cho, Kichul
    Heo, Jina
    Kim, Urim
    Lee, Yong Jae
    Choi, Dong-Yun
    Yoo, Chan
    Kim, Hee-Sik
    Bae, Seunghee
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2020, 30 (11)
  • [25] Characterization of the pVHL Interactome in Human Testis Using High-Throughput Library Screening
    Falconieri, Antonella
    Minervini, Giovanni
    Quaglia, Federica
    Sartori, Geppo
    Tosatto, Silvio C. E.
    CANCERS, 2022, 14 (04)
  • [26] High-Throughput Screening for Growth Inhibitors Using a Yeast Model of Familial Paraganglioma
    Bancos, Irina
    Bida, John Paul
    Tian, Defeng
    Bundrick, Mary
    John, Kristen
    Holte, Molly Nelson
    Her, Yeng F.
    Evans, Debra
    Saenz, Dyana T.
    Poeschla, Eric M.
    Hook, Derek
    Georg, Gunda
    Maher, L. James
    PLOS ONE, 2013, 8 (02):
  • [27] High-throughput cocrystal slurry screening by use of in situ Raman microscopy and multi-well plate
    Kojima, Takashi
    Tsutsumi, Shunichirou
    Yamamoto, Katsuhiko
    Ikeda, Yukihiro
    Moriwaki, Toshiya
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2010, 399 (1-2) : 52 - 59
  • [28] High-Throughput Screening for Streptomyces Antibiotic Biosynthesis Activators
    Chen, Li
    Wang, Yemin
    Guo, Hang
    Xu, Min
    Deng, Zixin
    Tao, Meifeng
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2012, 78 (12) : 4526 - 4528
  • [29] High-Throughput Transcriptomics Platform for Screening Environmental Chemicals
    Harrill, Joshua A.
    Everett, Logan J.
    Haggard, Derik E.
    Sheffield, Thomas
    Bundy, Joseph L.
    Willis, Clinton M.
    Thomas, Russell S.
    Shah, Imran
    Judson, Richard S.
    TOXICOLOGICAL SCIENCES, 2021, 181 (01) : 68 - 89
  • [30] High-throughput single molecule screening of DNA and proteins
    Yeung, ES
    CHEMICAL RECORD, 2001, 1 (02) : 123 - 139