Dynamical behavior of Lotka-Volterra competition systems: non-autonomous bistable case and the effect

被引:97
作者
Du, NH
Kon, R [1 ]
Sato, K
Takeuchi, Y
机构
[1] Shizuoka Univ, Dept Syst Engn, Oya, Shizuoka 422, Japan
[2] Hanoi Natl Univ, Fac Math Mech & Informat, Hanoi, Vietnam
基金
日本学术振兴会;
关键词
Lotka-Volterra equation; competition; bistable; telegraph noise;
D O I
10.1016/j.cam.2004.02.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is concerned with the study of trajectory behavior of Lotka-Volterra competition bistable systems and systems with telegraph noises. We proved that for bistable systems, there exists a unique solution, bounded above and below by positive constants. The oscillatory situation of systems with telegraph noises is pointed out. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:399 / 422
页数:24
相关论文
共 11 条
[2]   Extinction of species in nonautonomous Lotka-Volterra systems [J].
Ahmad, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (10) :2905-2910
[3]  
DU NH, 2000, ACTA MATH VIETNAM, V25, P145
[4]  
FARKAS M, 1994, PERIODIC MOTIONS
[5]  
Freedman H. I., 1980, Monographs and Textbooks in Pure and Applied Mathematics, V57
[6]   RANDOM MATRIX PRODUCTS AND MEASURES ON PROJECTIVE SPACES [J].
FURSTENBERG, H ;
KIFER, Y .
ISRAEL JOURNAL OF MATHEMATICS, 1983, 46 (1-2) :12-32
[7]  
GIHMAN I. I., 1979, The Theory of Stochastic Processes III
[8]   GLOBAL ASYMPTOTIC STABILITY IN A PERIODIC LOTKA-VOLTERRA SYSTEM [J].
GOPALSAMY, K .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1985, 27 (JUL) :66-72
[9]   POPULATION OSCILLATIONS OF BOREAL RODENTS - REGULATION BY MUSTELID PREDATORS LEADS TO CHAOS [J].
HANSKI, I ;
TURCHIN, P ;
KORPIMAKI, E ;
HENTTONEN, H .
NATURE, 1993, 364 (6434) :232-235
[10]  
Hofbauer J., 1998, EVOLUTIONARY GAME PO