Fiber Bragg grating-based shear strain sensors for adhesive bond monitoring

被引:0
作者
Sulejmani, Sanne [1 ]
Sonnenfeld, Camille [1 ]
Geernaert, Thomas [1 ]
Van Hemelrijck, Danny [2 ]
Luyckx, Geert [3 ]
Mergo, Pawel [4 ]
Urbanczyk, Waclaw [5 ]
Chah, Karima [6 ]
Caucheteur, Christophe [6 ]
Megret, Patrice [6 ]
Thienpont, Hugo [1 ]
Berghmans, Francis [1 ]
机构
[1] Vrije Univ Brussel, Brussels Photon Team, Pl Laan 2, B-1050 Brussels, Belgium
[2] Vrije Univ Brussel, BDept Mech Mat & Construct, B-1050 Brussels, Belgium
[3] Univ Ghent, Dept Mat Sci & Engn, B-9052 Ghent, Belgium
[4] Marie Curie Sklodowska Univ, Dept Optic Fiber Technol, PL-20031 Lublin, Poland
[5] Wroclaw Univ Technol, Inst Phys, PL-50370 Wroclaw, Poland
[6] Univ Mons, FElectromagnetism & Telecom Dept, B-7000 Mons, Belgium
来源
MICRO-STRUCTURED AND SPECIALTY OPTICAL FIBRES III | 2014年 / 9128卷
关键词
fiber Bragg grating; microstructured optical fiber; shear strain sensor; structural health monitoring; adhesive bond;
D O I
10.1117/12.2050338
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The application of shear stress sensors in structural health monitoring remains limited because current sensors are either difficult to implement, they feature a low measurement resolution or the interrogation of the output signal is complex. We propose to use fiber Bragg grating-based sensors fabricated in dedicated highly birefringent microstructured optical fibers. When embedded in a host material, the orientation angle of the fiber should be chosen such that their polarization axes are aligned parallel with the direction of maximum shear stress when the host is mechanically loaded. We present experimental results of sensors embedded in the adhesive layer of single lap and double lap structural joints. These tests demonstrate that when the joints are tension loaded, the embedded sensors have a shear stress sensitivity of around 60 pm/MPa. We study the influence of the adhesive material on the sensor response, as well as the influence of sensor orientation and location in the bond line Finally, we demonstrate the minimal thermal cross-sensitivity of the shear stress sensitivity of this sensor.
引用
收藏
页数:6
相关论文
共 5 条
  • [1] Goland M., 1944, Journal of Applied Mechanics, V11, pA17, DOI [DOI 10.1115/1.4009336, 10.1115/1.4009336]
  • [2] Response of FBGs in Microstructured and Bow Tie Fibers Embedded in Laminated Composite
    Luyckx, Geert
    Voet, Eli
    Geernaert, Thomas
    Chah, Karima
    Nasilowski, Tomasz
    De Waele, Wim
    Van Paepegem, Wim
    Becker, Martin
    Bartelt, Hartmut
    Urbanczyk, Waclaw
    Wojcik, Jan
    Degrieck, Joris
    Berghmans, Francis
    Thienpont, Hugo
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2009, 21 (18) : 1290 - 1292
  • [3] Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure
    Martynkien, Tadeusz
    Statkiewicz-Barabach, Gabriela
    Olszewski, Jacek
    Wojcik, Jan
    Mergo, Pawel
    Geernaert, Thomas
    Sonnenfeld, Camille
    Anuszkiewicz, Alicja
    Szczurowski, Marcin K.
    Tarnowski, Karol
    Makara, Mariusz
    Skorupski, Krzysztof
    Klimek, Jacek
    Poturaj, Krzysztof
    Urbanczyk, Waclaw
    Nasilowski, Tomasz
    Berghmans, Francis
    Thienpont, Hugo
    [J]. OPTICS EXPRESS, 2010, 18 (14): : 15113 - 15121
  • [4] Microstructured Optical Fiber Sensors Embedded in a Laminate Composite for Smart Material Applications
    Sonnenfeld, Camille
    Sulejmani, Sanne
    Geernaert, Thomas
    Eve, Sophie
    Lammens, Nicolas
    Luyckx, Geert
    Voet, Eli
    Degrieck, Joris
    Urbanczyk, Waclaw
    Mergo, Pawel
    Becker, Martin
    Bartelt, Hartmut
    Berghmans, Francis
    Thienpont, Hugo
    [J]. SENSORS, 2011, 11 (03) : 2566 - 2579
  • [5] Shear stress sensing with Bragg grating-based sensors in microstructured optical fibers
    Sulejmani, Sanne
    Sonnenfeld, Camille
    Geernaert, Thomas
    Luyckx, Geert
    Van Hemelrijck, Danny
    Mergo, Pawel
    Urbanczyk, Waclaw
    Chah, Karima
    Caucheteur, Christophe
    Megret, Patrice
    Thienpont, Hugo
    Berghmans, Francis
    [J]. OPTICS EXPRESS, 2013, 21 (17): : 20404 - 20416