Monte Carlo simulations of dose enhancement around gold nanoparticles used as X-ray imaging contrast agents and radiosensitizers

被引:10
作者
Li, W. B. [1 ]
Muellner, M. [1 ]
Greiter, M. B. [1 ]
Bissardon, C. [1 ,2 ]
Xie, W. Z. [1 ,3 ]
Schlattl, H. [1 ]
Oeh, U. [1 ]
Li, J. L. [3 ]
Hoeschen, C. [1 ]
机构
[1] Helmholtz Zentrum Munchen GmbH, Res Unit Med Radiat Phys & Diagnost, Neuherberg, Germany
[2] Univ Lyon 1, Dept Phys, Lyon, France
[3] Tsinghua Univ, Dept Engn Phys, Beijing, Peoples R China
来源
MEDICAL IMAGING 2014: PHYSICS OF MEDICAL IMAGING | 2014年 / 9033卷
关键词
Gold nanoparticle; dose enhancement; X-ray; medical imaging; radiotherapy; nanodosimetry; SECONDARY ELECTRONS; RADIATION; ENERGY; RADIOTHERAPY; DNA; GEOMETRY; PHYSICS; RBE;
D O I
10.1117/12.2043687
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Gold nanoparticles (GNPs) were demonstrated as X-ray imaging contrast agents and radiosensitizers in mice. However, the translational medical applications of GNPs in to the clinical practice need further detailed information on the biological effects related to the enhanced doses in malignant and healthy cells. The idea of improving radiotherapy with high atomic number materials, especially gold foils, was initiated in our research unit in the 1980s. Recently, experimental and theoretical efforts were made to investigate the potential improvement of imaging and radiotherapy with GNPs. Initially, the present work attempts to validate the dose enhancement effects of GNPs to cancer cells; secondly, it intends to examine the possible side effects on healthy cells when using GNPs as X-ray contrast agent. In this study, three Monte Carlo simulation programs, namely PENELOPE-2011, GEANT4 and EGSnrc were used to simulate the local energy deposition and the resulting dose enhancement of GNPs. Diameters of the GNPs were assumed to be 2 nm, 15 nm, 50 nm, 100 nm and 200 nm. The X-ray energy spectra for irradiation were 60 kVp, 80 kVp, 100 kVp, 150 kVp with a filtering of 2 7 mm Al for projectional radiography, and 8 mm Al for 100 kVp and 150 kVp for computed tomography. Additional peak energy of 200 kVp was simulated for radiotherapy purpose. The information of energy deposition and dose enhancement can help understanding the physical processes of medical imaging and the implication of nanoparticles in radiotherapy.
引用
收藏
页数:11
相关论文
共 41 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   Geometry and physics of the Geant4 toolkit for high and medium energy applications [J].
Apostolakis, J. ;
Asai, M. ;
Bogdanov, A. G. ;
Burkhardt, H. ;
Cosmo, G. ;
Elles, S. ;
Folger, G. ;
Grichine, V. M. ;
Gumplinger, P. ;
Heikkinen, A. ;
Hrivnacova, I. ;
Ivanchenko, V. N. ;
Jacquemier, J. ;
Koi, T. ;
Kokoulin, R. P. ;
Kossov, M. ;
Kurashige, H. ;
McLaren, I. ;
Link, O. ;
Maire, M. ;
Pokorski, W. ;
Sasaki, T. ;
Starkov, N. ;
Urban, L. ;
Wright, D. H. .
RADIATION PHYSICS AND CHEMISTRY, 2009, 78 (10) :859-873
[3]   Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution [J].
Brun, Emilie ;
Sanche, Leon ;
Sicard-Roselli, Cecile .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2009, 72 (01) :128-134
[4]   Variation of strand break yield for plasmid DNA irradiated with high-Z metal nanoparticles [J].
Butterworth, K. T. ;
Wyer, J. A. ;
Brennan-Fournet, M. ;
Latimer, C. J. ;
Shah, M. B. ;
Currell, F. J. ;
Hirst, D. G. .
RADIATION RESEARCH, 2008, 170 (03) :381-387
[5]   Geant4 physics processes for microdosimetry simulation: Design foundation and implementation of the first set of models [J].
Chauvie, S. ;
Francis, Z. ;
Guatelli, S. ;
Incerti, S. ;
Mascialino, B. ;
Moretto, P. ;
Nieminen, P. ;
Pia, M. G. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2007, 54 (06) :2619-2628
[6]  
Chauvie S, 2006, RADIAT RES, V166, P676
[7]   The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources [J].
Cho, Sang Hyun ;
Jones, Bernard L. ;
Krishnan, Sunil .
PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (16) :4889-4905
[8]   Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study [J].
Cho, SH .
PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (15) :N163-N173
[9]   Monte Carlo simulation on a gold nanoparticle irradiated by electron beams [J].
Chow, James C. L. ;
Leung, Michael K. K. ;
Jaffray, David A. .
PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (11) :3323-3331
[10]   Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model [J].
Douglass, Michael ;
Bezak, Eva ;
Penfold, Scott .
MEDICAL PHYSICS, 2013, 40 (07)