Deep Learning for Pediatric Posterior Fossa Tumor Detection and Classification: A Multi-Institutional Study

被引:46
作者
Quon, J. L. [1 ]
Bala, W. [5 ]
Chen, L. C. [7 ]
Wright, J. [8 ]
Kim, L. H. [7 ]
Han, M. [7 ]
Shpanskaya, K. [7 ]
Lee, E. H. [2 ]
Tong, E. [3 ]
Iv, M. [3 ]
Seekins, J. [5 ]
Lungren, M. P. [5 ]
Braun, K. R. M. [9 ,10 ]
Poussaint, T. Y. [11 ]
Laughlin, S. [12 ]
Taylor, M. D. [13 ]
Lober, R. M. [15 ]
Vogel, H. [4 ]
Fisher, P. G. [6 ]
Grant, G. A. [1 ]
Ramaswamy, V. [14 ]
Vitanza, N. A. [16 ,17 ]
Ho, C. Y. [9 ,10 ]
Edwards, M. S. B. [1 ]
Cheshier, S. H. [18 ]
Yeom, K. W. [5 ]
机构
[1] Stanford Univ, Dept Neurosurg, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Pathol, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Radiol, Lucile Packard Childrens Hosp, Palo Alto, CA 94304 USA
[6] Stanford Univ, Lucile Packard Childrens Hosp, Div Child Neurol, Palo Alto, CA 94304 USA
[7] Stanford Univ, Dept Urol, Sch Med, Stanford, CA 94305 USA
[8] Univ Washington, Sch Med, Dept Radiol, Seattle Childrens Hosp, Seattle, WA 98195 USA
[9] Indiana Univ, Riley Childrens Hosp, Dept Clin Radiol, Indianapolis, IN 46204 USA
[10] Indiana Univ, Riley Childrens Hosp, Dept Imaging Sci, Indianapolis, IN 46204 USA
[11] Boston Childrens Hosp, Dept Radiol, Boston, MA USA
[12] Univ Toronto, Hosp Sick Children, Dept Diagnost Imaging, Toronto, ON, Canada
[13] Univ Toronto, Hosp Sick Children, Dept Neurosurg, Toronto, ON, Canada
[14] Univ Toronto, Hosp Sick Children, Dept Haematol Oncol, Toronto, ON, Canada
[15] Wright State Univ, Boonshoft Sch Med, Dayton Childrens Hosp, Dept Neurosurg, Dayton, OH 45435 USA
[16] Univ Washington, Dept Pediat, Seattle Childrens Hosp, Div Pediat Hematol Oncol, Seattle, WA 98195 USA
[17] Fred Hutchinson Canc Res Ctr, 1124 Columbia St, Seattle, WA 98104 USA
[18] Univ Utah, Sch Med, Dept Neurosurg, Salt Lake City, UT USA
关键词
BRAIN-TUMORS; MANAGEMENT; CHILDREN; MRI;
D O I
10.3174/ajnr.A6704
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BACKGROUND AND PURPOSE Posterior fossa tumors are the most common pediatric brain tumors. MR imaging is key to tumor detection, diagnosis, and therapy guidance. We sought to develop an MR imaging-based deep learning model for posterior fossa tumor detection and tumor pathology classification. MATERIALS AND METHODS: The study cohort comprised 617 children (median age, 92 months; 56% mates) from 5 pediatric institutions with posterior fossa tumors: diffuse midline glioma of the pons (n = 122), medulloblastoma (n = 272), pilocytic astrocytoma (n = 135), and ependymoma (n = 88). There were 199 controls. Tumor histology served as ground truth except for diffuse midline glioma of the pons, which was primarily diagnosed by MR imaging. A modified ResNeXt-50-32x4d architecture served as the backbone for a multitask classifier model, using T2-weighted MRI5 as input to detect the presence of tumor and predict tumor class. Deep learning model performance was compared against that of 4 radiologists. RESULTS: Model tumor detection accuracy exceeded an AUROC of 0.99 and was similar to that of 4 radiologists. Model tumor classification accuracy was 92% with an F-1 score of 0.80. The model was most accurate at predicting diffuse midline glioma of the pons, followed by pilocytic astrocytoma and medulloblastoma. Ependymoma prediction was the least accurate. Tumor type classification accuracy and F-1 score were higher than those of 2 of the 4 radiologists. CONCLUSIONS: We present a multi-institutional deep learning model for pediatric posterior fossa tumor detection and classification with the potential to augment and improve the accuracy of radiotogic diagnosis.
引用
收藏
页码:1718 / 1725
页数:8
相关论文
共 26 条
[1]   Abdominal and pelvic computed tomography (CT) interpretation: discrepancy rates among experienced radiologists [J].
Abujudeh, Hani H. ;
Boland, Giles W. ;
Kaewlai, Rathachai ;
Rabiner, Pavel ;
Halpern, Elkarn F. ;
Gazelle, G. Scott ;
Thrall, James H. .
EUROPEAN RADIOLOGY, 2010, 20 (08) :1952-1957
[2]   A Road Map for Translational Research on Artificial Intelligence in Medical Imaging: From the 2018 National Institutes of Health/RSNA/ACR/The Academy Workshop [J].
Allen, Bibb, Jr. ;
Seltzer, Steven E. ;
Langlotz, Curtis P. ;
Dreyer, Keith P. ;
Summers, Ronald M. ;
Petrick, Nicholas ;
Marinac-Dabic, Danica ;
Cruz, Marisa ;
Alkasab, Tarik K. ;
Hanisch, Robert J. ;
Nilsen, Wendy J. ;
Burleson, Judy ;
Lyman, Kevin ;
Kandarpa, Krishna .
JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2019, 16 (09) :1179-1189
[3]  
[Anonymous], 2014, WORKSHOP INT C LEARN, DOI DOI 10.48550/ARXIV.1312.6034
[4]   Prediction of posterior fossa tumor type in children by means of magnetic resonance image properties, spectroscopy, and neural networks [J].
Arle, JE ;
Morriss, C ;
Wang, ZYJ ;
Zimmerman, RA ;
Phillips, PG ;
Sutton, LN .
JOURNAL OF NEUROSURGERY, 1997, 86 (05) :755-761
[5]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[6]   Neural network classification of pediatric posterior fossa tumors using clinical and imaging data [J].
Bidiwala, S ;
Pittman, T .
PEDIATRIC NEUROSURGERY, 2004, 40 (01) :8-15
[7]   DNA methylation-based classification of central nervous system tumours [J].
Capper, David ;
Jones, David T. W. ;
Sill, Martin ;
Hovestadt, Volker ;
Schrimpf, Daniel ;
Sturm, Dominik ;
Koelsche, Christian ;
Sahm, Felix ;
Chavez, Lukas ;
Reuss, David E. ;
Kratz, Annekathrin ;
Wefers, Annika K. ;
Huang, Kristin ;
Pajtler, Kristian W. ;
Schweizer, Leonille ;
Stichel, Damian ;
Olar, Adriana ;
Engel, Nils W. ;
Lindenberg, Kerstin ;
Harter, Patrick N. ;
Braczynski, Anne K. ;
Plate, Karl H. ;
Dohmen, Hildegard ;
Garvalov, Boyan K. ;
Coras, Roland ;
Hoelsken, Annett ;
Hewer, Ekkehard ;
Bewerunge-Hudler, Melanie ;
Schick, Matthias ;
Fischer, Roger ;
Beschorner, Rudi ;
Schittenhelm, Jens ;
Staszewski, Ori ;
Wani, Khalida ;
Varlet, Pascale ;
Pages, Melanie ;
Temming, Petra ;
Lohmann, Dietmar ;
Selt, Florian ;
Witt, Hendrik ;
Milde, Till ;
Witt, Olaf ;
Aronica, Eleonora ;
Giangaspero, Felice ;
Rushing, Elisabeth ;
Scheurlen, Wolfram ;
Geisenberger, Christoph ;
Rodriguez, Fausto J. ;
Becker, Albert ;
Preusser, Matthias .
NATURE, 2018, 555 (7697) :469-+
[8]   Distributed deep learning networks among institutions for medical imaging [J].
Chang, Ken ;
Balachandar, Niranjan ;
Lam, Carson ;
Yi, Darvin ;
Brown, James ;
Beers, Andrew ;
Rosen, Bruce ;
Rubin, Daniel L. ;
Kalpathy-Cramer, Jayashree .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2018, 25 (08) :945-954
[9]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[10]   MEASURES OF THE AMOUNT OF ECOLOGIC ASSOCIATION BETWEEN SPECIES [J].
DICE, LR .
ECOLOGY, 1945, 26 (03) :297-302