On a sum involving the divisor function

被引:19
作者
Ma, Jing [1 ]
Sun, Huayan [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Divisor function; Asymptotic formula; Exponent pair;
D O I
10.1007/s10998-020-00378-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let d(n) be the divisor function and denote by [t] the integral part of the real number t. In this short note, we prove that Sigma(n <= x) d([x/n]) = x Sigma(m >= 1) d(m)/m(m+1) + O-epsilon(x(11/23+epsilon)) for x -> infinity.
引用
收藏
页码:185 / 191
页数:7
相关论文
共 7 条
[1]   On a sum involving the Euler function [J].
Bordelles, Olivier ;
Dai, Lixia ;
Heyman, Randell ;
Pan, Hao ;
Shparlinski, Igor E. .
JOURNAL OF NUMBER THEORY, 2019, 202 :278-297
[2]  
Bourgain J., 2017, Mean square of zeta function, circle problem and divisor problem revisited
[3]  
Graham S. W., 1991, LondonMathematical Society Lecture Note Series, DOI [10.1017/CBO9780511661976, DOI 10.1017/CBO9780511661976]
[4]   On a sum involving the Mangoldt function [J].
Ma, Jing ;
Wu, Jie .
PERIODICA MATHEMATICA HUNGARICA, 2021, 83 (01) :39-48
[5]   Note on a paper by Bordelles, Dai, Heyman, Pan and Shparlinski [J].
Wu, J. .
PERIODICA MATHEMATICA HUNGARICA, 2020, 80 (01) :95-102
[6]   On a sum involving the Euler totient function [J].
Wu, J. .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (04) :536-541
[7]   On a sum involving the Euler function [J].
Zhai, Wenguang .
JOURNAL OF NUMBER THEORY, 2020, 211 :199-219