A rigidity result for crossed products of actions of Baumslag-Solitar groups

被引:2
作者
Meesschaert, Niels [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Leuven, Belgium
基金
比利时弗兰德研究基金会;
关键词
II1; factors; deformation/rigidity theory; measured group theory; Baumslag-Solitar groups; AMALGAMATED FREE-PRODUCTS; HNN EXTENSIONS; II1; FACTORS; CLASSIFICATION; ALGEBRAS; INDEX;
D O I
10.1142/S0129167X15501177
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let BS(n(1), m(1)) curved right arrow X-1 and BS(n(2), m(2)) curved right arrow X-2 be two ergodic essentially free probability measure preserving actions of nonamenable Baumslag-Solitar groups whose canonical almost normal abelian subgroups act aperiodically. We prove that an isomorphism between the corresponding crossed product II1 factors forces BS(n(1), m(1)) congruent to BS(n(2), m(2)) when vertical bar n(1)vertical bar not equal vertical bar m(1)vertical bar and BS(n(1), m(1)) congruent to BS(n(2), +/- m(2)) when vertical bar n(1)vertical bar = vertical bar m(1)vertical bar. This improves an orbit equivalence rigidity result obtained by Houdayer and Raum in [Baumslag-Solitar groups, relative profinite completions and measure equivalence rigidity, J. Topol. 8 (2015) 295-313].
引用
收藏
页数:32
相关论文
共 36 条
[1]  
[Anonymous], 1949, Journal of the London Mathematical Society
[2]  
[Anonymous], 1992, Word processing in groups
[3]  
BAUMSLAG G, 1962, B AM MATH SOC, V68, P199, DOI 10.1090/S0002-9904-1962-10745-9
[4]   W*-superrigidity for group von Neumann algebras of left-right wreath products [J].
Berbec, Mihaita ;
Vaes, Stefaan .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 108 :1116-1152
[5]   WORD PROBLEM [J].
BRITTON, JL .
ANNALS OF MATHEMATICS, 1963, 77 (01) :16-&
[6]   BASS-SERRE RIGIDITY RESULTS IN VON NEUMANN ALGEBRAS [J].
Chifan, Ionut ;
Houdayer, Cyril .
DUKE MATHEMATICAL JOURNAL, 2010, 153 (01) :23-54
[7]   CLASSIFICATION OF INJECTIVE FACTORS - CASES II1, II INFINITY, III LAMBDA, LAMBDA NOT-EQUAL-TO 1 [J].
CONNES, A .
ANNALS OF MATHEMATICS, 1976, 104 (01) :73-115
[8]  
Connes A., 1994, Non-commutative Geometry
[9]   C*-SIMPLE GROUPS: AMALGAMATED FREE PRODUCTS, HNN EXTENSIONS, AND FUNDAMENTAL GROUPS OF 3-MANIFOLDS [J].
De la Harpe, Pierre ;
Preaux, Jean-Philippe .
JOURNAL OF TOPOLOGY AND ANALYSIS, 2011, 3 (04) :451-489
[10]  
Falguieres S., 2009, THESIS