Transporter regulator RS1 (RSC1A1) coats the trans-Golgi network and migrates into the nucleus

被引:28
作者
Kroiss, Matthias [1 ]
Leyerer, Marina [1 ]
Gorboulev, Valentin [1 ]
Kuehlkamp, Thomas [1 ]
Kipp, Helmut [1 ]
Koepsell, Hermann [1 ]
机构
[1] Univ Wurzburg, Inst Anat & Zellbiol, D-97070 Wurzburg, Germany
关键词
Na+-D-glucose cotransport; SGLT1; RS1; confluence-dependent regulation; nuclear migration; dynamin; brefeldin A;
D O I
10.1152/ajprenal.00067.2006
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The product of gene RSC1A1, named RS1, is involved in transcriptional and posttranscriptional regulation of sodium-D-glucose cotransporter SGLT1, and removal of RS1 in mice led to an increase of SGLT1 expression in small intestine and to obesity (Osswald C, Baumgarten K, Stumpel F, Gorboulev V, Akimjanova M, Knobeloch K-P, Horak I, Kluge R, Joost H-G, and Koepsell H. Mol Cell Biol 25: 78-87, 2005). Previous data showed that RS1 inhibits transcription of SGLT1 in LLC-PK1 cells derived from porcine kidney. A decrease of the intracellular amount of RS1 protein was observed during cell confluence, which was paralleled by transcriptional upregulation of SGLT1. In the present study, the subcellular distributions of endogenously expressed RS1 and SGLT1 were compared in LLC-PK1 cells and human embryonic kidney (HEK)-293 cells using immunofluorescence microscopy. RS1 was located at the plasma membrane, at the entire trans-Golgi network (TGN), and within the nucleus. Treatment of LLC-PK1 cells with brefeldin A induced rapid release of RS1 from the TGN, and confluence of LLC-PK1 cells was accompanied by reduction of nuclear location of RS1; 84-90% of subconfluent cells and 5-34% of confluent cells contained RS1 in the nuclei. This suggests that confluence-dependent transcriptional inhibition by RS1 is partially regulated by nuclear migration. Furthermore, we assigned SGLT1 to microtubule-associated tubulovesicular structures and dynamin-containing parts of the TGN. The data indicate that RS1 inhibits the dynamin-dependent release of SGLT1-containing vesicles from the TGN.
引用
收藏
页码:F1201 / F1212
页数:12
相关论文
共 39 条
[1]   TGN38 and its orthologues: Roles in post-TGN vesicle formation and maintenance of TGN morphology [J].
Banting, G ;
Ponnambalam, S .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 1997, 1355 (03) :209-217
[2]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[3]   Brefeldin A: The advantage of being uncompetitive [J].
Chardin, P ;
McCormick, F .
CELL, 1999, 97 (02) :153-155
[4]   Regulation of glucose transporter SGLT1 by ubiquitin ligase Nedd4-2 and kinases SGK1, SGK3, and PKB [J].
Dieter, M ;
Palmada, M ;
Rajamanickam, J ;
Aydin, A ;
Busjahn, A ;
Boehmer, C ;
Luft, FC ;
Lang, F .
OBESITY RESEARCH, 2004, 12 (05) :862-870
[5]   Golgi-disturbing agents [J].
Dinter, A ;
Berger, EG .
HISTOCHEMISTRY AND CELL BIOLOGY, 1998, 109 (5-6) :571-590
[6]   BREFELDIN-A INHIBITS GOLGI MEMBRANE-CATALYZED EXCHANGE OF GUANINE-NUCLEOTIDE ONTO ARF PROTEIN [J].
DONALDSON, JG ;
FINAZZI, D ;
KLAUSNER, RD .
NATURE, 1992, 360 (6402) :350-352
[7]   The GGA proteins: key players in protein sorting at the trans-Golgi network [J].
Ghosh, P ;
Kornfeld, S .
EUROPEAN JOURNAL OF CELL BIOLOGY, 2004, 83 (06) :257-262
[8]   Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization [J].
Grozinger, CM ;
Schreiber, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (14) :7835-7840
[9]   INHIBITION BY BREFELDIN-A OF A GOLGI MEMBRANE ENZYME THAT CATALYZES EXCHANGE OF GUANINE-NUCLEOTIDE BOUND TO ARF [J].
HELMS, JB ;
ROTHMAN, JE .
NATURE, 1992, 360 (6402) :352-354
[10]   Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors [J].
Jackson, CL ;
Casanova, JE .
TRENDS IN CELL BIOLOGY, 2000, 10 (02) :60-67