A generalization of the Hyers-Ulam-Rassias stability of the Pexiderized quadratic equations

被引:39
作者
Jun, KW
Lee, YH [1 ]
机构
[1] Kongju Natl Univ Educ, Dept Math Educ, Kong Ju 314060, South Korea
[2] Chungnam Natl Univ, Dept Math, Taejon 305764, South Korea
关键词
quadratic function; pexiderized quadratic equation;
D O I
10.1016/j.jmaa.2004.04.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the Hyers-Ulam-Rassias stability by considering the cases that the approximate remainder rho is defined by f(x * y) + f(x * y(-1)) - 2g(x) - 2g(y) = rho(x, y), f(x * y) + g(x * y(-1)) - 2h(x) - 2k(y) = rho(x, y), where (G, *) is a group, X is a real or complex Hausdorff topological vector space and f, g, h, k are functions from G into X. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:70 / 86
页数:17
相关论文
共 23 条
[1]  
[Anonymous], J KOREAN MATH SOC
[2]  
Cholewa P. W., 1984, AEQUATIONES MATH, V27, P76, DOI DOI 10.1007/BF02192660
[3]   ON THE STABILITY OF THE QUADRATIC MAPPING IN NORMED SPACES [J].
CZERWIK, S .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1992, 62 :59-64
[4]  
Czerwik S, 2003, STABILITY FUNCTIONAL
[5]  
CZERWIK S., 2002, Functional Equations and Inequalities in Several Variables
[6]  
Gajda Z, 1991, INT J MATH MATH SCI, V14, P431, DOI [DOI 10.1155/S016117129100056X, 10.1155/S016117129100056X]
[7]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[8]  
Hyers D.H., 1998, Stability of Functional Equations in Several Variables
[9]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[10]   Some further generalizations of the Hyers-Ulam-Rassias stability of functional equations [J].
Jian, W .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :406-423