Stability in data-driven MPC: an inherent robustness perspective

被引:8
作者
Berberich, Julian [1 ]
Koehler, Johannes [2 ]
Mueller, Matthias A. [3 ]
Allgower, Frank [1 ]
机构
[1] Univ Stuttgart, Inst Syst Theory & Automat Control, D-70550 Stuttgart, Germany
[2] Swiss Fed Inst Technol, Inst Dynam Syst & Control, ZH-8092 Zurich, Switzerland
[3] Leibniz Univ Hannover, Inst Automat Control, D-30167 Hannover, Germany
来源
2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC) | 2022年
基金
欧洲研究理事会;
关键词
MODEL-PREDICTIVE CONTROL; TO-STATE STABILITY; SYSTEMS;
D O I
10.1109/CDC51059.2022.9993361
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data-driven model predictive control (DD-MPC) based on Willems' Fundamental Lemma has received much attention in recent years, allowing to control systems directly based on an implicit data-dependent system description. The literature contains many successful practical applications as well as theoretical results on closed-loop stability and robustness. In this paper, we provide a tutorial introduction to DD-MPC for unknown linear time-invariant (LTI) systems with focus on (robust) closed-loop stability. We first address the scenario of noise-free data, for which we present a DD-MPC scheme with terminal equality constraints and derive closed-loop properties. In case of noisy data, we introduce a simple yet powerful approach to analyze robust stability of DD-MPC by combining continuity of DD-MPC w.r.t. noise with inherent robustness of model-based MPC, i.e., robustness of nominal MPC w.r.t. small disturbances. Moreover, we discuss how the presented proof technique allows to show closed-loop stability of a variety of DD-MPC schemes with noisy data, as long as the corresponding model-based MPC is inherently robust.
引用
收藏
页码:1105 / 1110
页数:6
相关论文
共 33 条
[1]  
Alsalti M, 2023, Arxiv, DOI arXiv:2204.01148
[2]   The explicit linear quadratic regulator for constrained systems [J].
Bemporad, A ;
Morari, M ;
Dua, V ;
Pistikopoulos, EN .
AUTOMATICA, 2002, 38 (01) :3-20
[3]  
Berberich J., 2022, arXiv
[4]  
Berberich J, 2022, Arxiv, DOI arXiv:2205.11859
[5]   On the design of terminal ingredients for data-driven MPC [J].
Berberich, Julian ;
Koehler, Johannes ;
Mueller, Matthias A. ;
Allgoewer, Frank .
IFAC PAPERSONLINE, 2021, 54 (06) :257-263
[6]   Data-driven model predictive control: closed-loop guarantees and experimental results [J].
Berberich, Julian ;
Koehler, Johannes ;
Mueller, Matthias A. ;
Allgoewer, Frank .
AT-AUTOMATISIERUNGSTECHNIK, 2021, 69 (07) :608-618
[7]  
Berberich J, 2020, IEEE DECIS CONTR P, P1260, DOI 10.1109/CDC42340.2020.9303965
[8]   Data-Driven Model Predictive Control With Stability and Robustness Guarantees [J].
Berberich, Julian ;
Koehler, Johannes ;
Mueller, Matthias A. ;
Allgoewer, Frank .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (04) :1702-1717
[9]   Robust Stability Analysis of a Simple Data-Driven Model Predictive Control Approach [J].
Bongard, Joscha ;
Berberich, Julian ;
Koehler, Johannes ;
Allgoewer, Frank .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (05) :2625-2637
[10]   Input-output-to-state stability for discrete-time systems [J].
Cai, Chaohong ;
Teel, Andrew R. .
AUTOMATICA, 2008, 44 (02) :326-336