A CHARACTERIZATION OF HIGHER RANK SYMMETRIC SPACES VIA BOUNDED COHOMOLOGY

被引:56
作者
Bestvina, Mladen [1 ]
Fujiwara, Koji [2 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi 9808579, Japan
基金
美国国家科学基金会;
关键词
Bounded cohomology; quasi-homomorphisms; higher rank symmetric spaces; Rank Rigidity theorem; rank; 1; isometries;
D O I
10.1007/s00039-009-0717-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be complete nonpositively curved Riemannian manifold of finite volume whose fundamental group Gamma does not contain a finite index subgroup which is a product of infinite groups. We show that the universal cover (M) over tilde is a higher rank symmetric space iff H(b)(2) (M; R) -> H(2)(M; R) is injective (and otherwise the kernel is infinite dimensional). This is the converse of a theorem of Burger-Monod. The proof uses the celebrated Rank Rigidity Theorem, as well as a new construction of quasi-homomorphisms on groups that act on CAT(0) spaces and contain rank 1 elements.
引用
收藏
页码:11 / 40
页数:30
相关论文
共 18 条
[1]  
BALLMANN W, 1987, J DIFFER GEOM, V25, P1
[2]  
BALLMANN W, 1996, I HAUTES ETUDES SCI, V82, P169
[3]  
BALLMANN W, 1995, M BRAIN LECT SPAC NO, V25
[4]  
Bavard C., 1991, ENSEIGN MATH, V37, P109
[5]   Asymptotic geometry of the mapping class group and Teichmuller space [J].
Behrstock, Jason A. .
GEOMETRY & TOPOLOGY, 2006, 10 :1523-1578
[6]   Bounded cohomology of subgroups of mapping class groups [J].
Bestvina, Mladen ;
Fujiwara, Koji .
GEOMETRY & TOPOLOGY, 2002, 6 :69-89
[7]  
BROOKS R, 1981, RIEMANN SURFACES REL, P53
[8]   Sulphonylurea-induced hypoglycaemia in type 2 diabetes mellitus: a review [J].
Burge, MR ;
Sood, V ;
Sobhy, TA ;
Rassam, MG ;
Schade, DS .
DIABETES OBESITY & METABOLISM, 1999, 1 (04) :199-206
[9]   Continuous bounded cohomology and applications to rigidity theory [J].
Burger, M ;
Monod, N .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (02) :219-280
[10]  
Canary R., 1993, J AM MATH SOC, V6, P1, DOI 10.1090/S0894-0347-1993-1166330-8