A CHARACTERIZATION OF HIGHER RANK SYMMETRIC SPACES VIA BOUNDED COHOMOLOGY

被引:52
作者
Bestvina, Mladen [1 ]
Fujiwara, Koji [2 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi 9808579, Japan
基金
美国国家科学基金会;
关键词
Bounded cohomology; quasi-homomorphisms; higher rank symmetric spaces; Rank Rigidity theorem; rank; 1; isometries;
D O I
10.1007/s00039-009-0717-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be complete nonpositively curved Riemannian manifold of finite volume whose fundamental group Gamma does not contain a finite index subgroup which is a product of infinite groups. We show that the universal cover (M) over tilde is a higher rank symmetric space iff H(b)(2) (M; R) -> H(2)(M; R) is injective (and otherwise the kernel is infinite dimensional). This is the converse of a theorem of Burger-Monod. The proof uses the celebrated Rank Rigidity Theorem, as well as a new construction of quasi-homomorphisms on groups that act on CAT(0) spaces and contain rank 1 elements.
引用
收藏
页码:11 / 40
页数:30
相关论文
共 18 条
  • [1] BALLMANN W, 1987, J DIFFER GEOM, V25, P1
  • [2] BALLMANN W, 1996, I HAUTES ETUDES SCI, V82, P169
  • [3] BALLMANN W, 1995, M BRAIN LECT SPAC NO, V25
  • [4] Bavard C., 1991, ENSEIGN MATH, V37, P109
  • [5] Asymptotic geometry of the mapping class group and Teichmuller space
    Behrstock, Jason A.
    [J]. GEOMETRY & TOPOLOGY, 2006, 10 : 1523 - 1578
  • [6] Bounded cohomology of subgroups of mapping class groups
    Bestvina, Mladen
    Fujiwara, Koji
    [J]. GEOMETRY & TOPOLOGY, 2002, 6 : 69 - 89
  • [7] BROOKS R, 1981, RIEMANN SURFACES REL, P53
  • [8] Sulphonylurea-induced hypoglycaemia in type 2 diabetes mellitus: a review
    Burge, MR
    Sood, V
    Sobhy, TA
    Rassam, MG
    Schade, DS
    [J]. DIABETES OBESITY & METABOLISM, 1999, 1 (04) : 199 - 206
  • [9] Continuous bounded cohomology and applications to rigidity theory
    Burger, M
    Monod, N
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (02) : 219 - 280
  • [10] Canary R., 1993, J AM MATH SOC, V6, P1, DOI 10.1090/S0894-0347-1993-1166330-8