CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells

被引:27
|
作者
Bloomer, Hanan [1 ,2 ,3 ]
Khirallah, Jennifer [1 ]
Li, Yamin [1 ]
Xu, Qiaobing [1 ]
机构
[1] Tufts Univ, Dept Biomed Engn, Medford, MA 02155 USA
[2] Tufts Univ, Sch Med, Boston, MA 02111 USA
[3] Tufts Univ, Grad Sch Biomed Sci, Boston, MA 02111 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
CRISPR; Cas9; Drug delivery systems; RNP; Gene therapy; Genome editing; Epigenome editing; HUMAN HEMATOPOIETIC STEM; INDUCIBLE CRISPR-CAS9 SYSTEM; HIGHLY EFFICIENT; GENE-THERAPY; NANOPARTICLE DELIVERY; LIPID NANOPARTICLES; CAS9; PROTEIN; OFF-TARGET; T-CELLS; DRUG-DELIVERY;
D O I
10.1016/j.addr.2021.114087
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system has revolutionized the ability to edit the mammalian genome, providing a platform for the correction of pathogenic mutations and further investigation into gene function. CRISPR reagents can be delivered into the cell as DNA, RNA, or pre-formed ribonucleoproteins (RNPs). RNPs offer numerous advantages over other delivery approaches due to their ability to rapidly target genomic sites and quickly degrade thereafter. Here, we review the production steps and delivery methods for Cas9 RNPs. Additionally, we discuss how RNPs enhance genome and epigenome editing efficiencies, reduce off-target editing activity, and minimize cellular toxicity in clinically relevant mammalian cell types. We include details on a broad range of editing approaches, including novel base and prime editing techniques. Finally, we summarize key challenges for the use of RNPs, and propose future perspectives on the field.(c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Progresses of CRISPR/Cas9 genome editing in forage crops
    Haq, Syed Inzimam Ul
    Zheng, Dianfeng
    Feng, Naijie
    Jiang, Xingyu
    Qiao, Feng
    He, Jin-Sheng
    Qiu, Quan-Sheng
    JOURNAL OF PLANT PHYSIOLOGY, 2022, 279
  • [42] CRISPR ribonucleoprotein-mediated genetic engineering in plants
    Zhang, Yingxiao
    Iaffaldano, Brian
    Qi, Yiping
    PLANT COMMUNICATIONS, 2021, 2 (02)
  • [43] CRISPR/Cas9-mediated genome editing: From basic research to translational medicine
    Jacinto, Filipe V.
    Link, Wolfgang
    Ferreira, Bibiana I.
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2020, 24 (07) : 3766 - 3778
  • [44] Dual pH-responsive CRISPR/Cas9 ribonucleoprotein xenopeptide complexes for genome editing
    Luo, Xianjin
    Germer, Janin
    Burghardt, Tobias
    Grau, Melina
    Lin, Yi
    Hoehn, Miriam
    Laechelt, Ulrich
    Wagner, Ernst
    EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2025, 205
  • [45] Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing
    Duan, Li
    Ouyang, Kan
    Xu, Xiao
    Xu, Limei
    Wen, Caining
    Zhou, Xiaoying
    Qin, Zhuan
    Xu, Zhiyi
    Sun, Wei
    Liang, Yujie
    FRONTIERS IN GENETICS, 2021, 12
  • [46] CRISPR/CAS9, the king of genome editing tools
    A. V. Bannikov
    A. V. Lavrov
    Molecular Biology, 2017, 51 : 514 - 525
  • [47] A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids
    Beneke, Tom
    Madden, Ross
    Makin, Laura
    Valli, Jessica
    Sunter, Jack
    Gluenz, Eva
    ROYAL SOCIETY OPEN SCIENCE, 2017, 4 (05): : 1 - 16
  • [48] CRISPR/Cas9 genome editing technology in filamentous fungi: progress and perspective
    Song, Runjie
    Zhai, Qing
    Sun, Lu
    Huang, Enxia
    Zhang, Yu
    Zhu, Yanli
    Guo, Qingyun
    Tian, Yanan
    Zhao, Baoyu
    Lu, Hao
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2019, 103 (17) : 6919 - 6932
  • [49] Epigenome editing by CRISPR/Cas9 in clinical settings: possibilities and challenges
    Pei, Wen-Di
    Zhang, Yan
    Yin, Tai-Lang
    Yu, Yang
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2020, 19 (03) : 215 - 228
  • [50] Advances in therapeutic CRISPR/Cas9 genome editing
    Savic, Natasa
    Schwank, Gerald
    TRANSLATIONAL RESEARCH, 2016, 168 : 15 - 21