CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells

被引:27
|
作者
Bloomer, Hanan [1 ,2 ,3 ]
Khirallah, Jennifer [1 ]
Li, Yamin [1 ]
Xu, Qiaobing [1 ]
机构
[1] Tufts Univ, Dept Biomed Engn, Medford, MA 02155 USA
[2] Tufts Univ, Sch Med, Boston, MA 02111 USA
[3] Tufts Univ, Grad Sch Biomed Sci, Boston, MA 02111 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
CRISPR; Cas9; Drug delivery systems; RNP; Gene therapy; Genome editing; Epigenome editing; HUMAN HEMATOPOIETIC STEM; INDUCIBLE CRISPR-CAS9 SYSTEM; HIGHLY EFFICIENT; GENE-THERAPY; NANOPARTICLE DELIVERY; LIPID NANOPARTICLES; CAS9; PROTEIN; OFF-TARGET; T-CELLS; DRUG-DELIVERY;
D O I
10.1016/j.addr.2021.114087
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system has revolutionized the ability to edit the mammalian genome, providing a platform for the correction of pathogenic mutations and further investigation into gene function. CRISPR reagents can be delivered into the cell as DNA, RNA, or pre-formed ribonucleoproteins (RNPs). RNPs offer numerous advantages over other delivery approaches due to their ability to rapidly target genomic sites and quickly degrade thereafter. Here, we review the production steps and delivery methods for Cas9 RNPs. Additionally, we discuss how RNPs enhance genome and epigenome editing efficiencies, reduce off-target editing activity, and minimize cellular toxicity in clinically relevant mammalian cell types. We include details on a broad range of editing approaches, including novel base and prime editing techniques. Finally, we summarize key challenges for the use of RNPs, and propose future perspectives on the field.(c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Lipofection-mediated genome editing using DNA-free delivery of the Cas9/gRNA ribonucleoprotein into plant cells
    Liu, Wusheng
    Rudis, Mary R.
    Cheplick, Matthew H.
    Millwood, Reginald J.
    Yang, Jian-Ping
    Ondzighi-Assoume, Christine A.
    Montgomery, Garrett A.
    Burris, Kellie P.
    Mazarei, Mitra
    Chesnut, Jonathan D.
    Stewart, Charles Neal, Jr.
    PLANT CELL REPORTS, 2020, 39 (02) : 245 - 257
  • [32] Genome Editing with CRISPR/Cas9: First Steps Towards a new Era in Medicine?
    Schermer, Bernhard
    Benzing, Thomas
    DEUTSCHE MEDIZINISCHE WOCHENSCHRIFT, 2019, 144 (04) : 276 - 281
  • [33] CRISPR/Cas9 genome editing through in planta transformation
    Zlobin, Nikolay E.
    Lebedeva, Marina V.
    Taranov, Vasiliy V.
    CRITICAL REVIEWS IN BIOTECHNOLOGY, 2020, 40 (02) : 153 - 168
  • [34] Therapeutic Genome Editing and its Potential Enhancement through CRISPR Guide RNA and Cas9 Modifications
    Batzir, Nurit Assia
    Tovin, Adi
    Hendel, Ayal
    PEDIATRIC ENDOCRINOLOGY REVIEWS PER, 2017, 14 (04) : 353 - 363
  • [35] Recent Advances in Genome Editing Using CRISPR/Cas9
    Ding, Yuduan
    Li, Hong
    Chen, Ling-Ling
    Xie, Kabin
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [36] Insights into maize genome editing via CRISPR/Cas9
    Agarwal, Astha
    Yadava, Pranjal
    Kumar, Krishan
    Singh, Ishwar
    Kaul, Tanushri
    Pattanayak, Arunava
    Agrawal, Pawan Kumar
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2018, 24 (02) : 175 - 183
  • [37] The CRISPR/Cas9 system for plant genome editing and beyond
    Bortesi, Luisa
    Fischer, Rainer
    BIOTECHNOLOGY ADVANCES, 2015, 33 (01) : 41 - 52
  • [38] Targeted genome editing in algae using CRISPR/Cas9
    Tanwar A.
    Sharma S.
    Kumar S.
    Indian Journal of Plant Physiology, 2018, 23 (4): : 653 - 669
  • [39] CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review
    Syding, Linn Amanda
    Nickl, Petr
    Kasparek, Petr
    Sedlacek, Radislav
    CELLS, 2020, 9 (04)
  • [40] Application of CRISPR/Cas9 Nuclease in Amphioxus Genome Editing
    Su, Liuru
    Shi, Chenggang
    Huang, Xin
    Wang, Yiquan
    Li, Guang
    GENES, 2020, 11 (11) : 1 - 9