CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells

被引:27
|
作者
Bloomer, Hanan [1 ,2 ,3 ]
Khirallah, Jennifer [1 ]
Li, Yamin [1 ]
Xu, Qiaobing [1 ]
机构
[1] Tufts Univ, Dept Biomed Engn, Medford, MA 02155 USA
[2] Tufts Univ, Sch Med, Boston, MA 02111 USA
[3] Tufts Univ, Grad Sch Biomed Sci, Boston, MA 02111 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
CRISPR; Cas9; Drug delivery systems; RNP; Gene therapy; Genome editing; Epigenome editing; HUMAN HEMATOPOIETIC STEM; INDUCIBLE CRISPR-CAS9 SYSTEM; HIGHLY EFFICIENT; GENE-THERAPY; NANOPARTICLE DELIVERY; LIPID NANOPARTICLES; CAS9; PROTEIN; OFF-TARGET; T-CELLS; DRUG-DELIVERY;
D O I
10.1016/j.addr.2021.114087
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system has revolutionized the ability to edit the mammalian genome, providing a platform for the correction of pathogenic mutations and further investigation into gene function. CRISPR reagents can be delivered into the cell as DNA, RNA, or pre-formed ribonucleoproteins (RNPs). RNPs offer numerous advantages over other delivery approaches due to their ability to rapidly target genomic sites and quickly degrade thereafter. Here, we review the production steps and delivery methods for Cas9 RNPs. Additionally, we discuss how RNPs enhance genome and epigenome editing efficiencies, reduce off-target editing activity, and minimize cellular toxicity in clinically relevant mammalian cell types. We include details on a broad range of editing approaches, including novel base and prime editing techniques. Finally, we summarize key challenges for the use of RNPs, and propose future perspectives on the field.(c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing
    Zhang, Song
    Shen, Jiangtao
    Li, Dali
    Cheng, Yiyun
    THERANOSTICS, 2021, 11 (02): : 614 - 648
  • [2] Genome and epigenome editing with CRISPR/Cas9 for gene therapy and disease modeling
    Gersbach, Charles A.
    TRANSGENIC RESEARCH, 2016, 25 (02) : 201 - 201
  • [3] Enhanced Genome Editing with Cas9 Ribonucleoprotein in Diverse Cells and Organisms
    Farboud, Behnom
    Jarvis, Erin
    Roth, Theodore L.
    Shin, Jiying
    Corn, Jacob E.
    Marson, Alexander
    Meyer, Barbara J.
    Patel, Nipam H.
    Hochstrasser, Megan L.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2018, (135):
  • [4] Systems of Delivery of CRISPR/Cas9 Ribonucleoprotein Complexes for Genome Editing
    Amirkhanov, R. N.
    Stepanov, G. A.
    RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY, 2019, 45 (06) : 431 - 437
  • [5] Genome editing of immune cells using CRISPR/Cas9
    Kim, Segi
    Hupperetz, Cedric
    Lim, Seongjoon
    Kim, Chan Hyuk
    BMB REPORTS, 2021, 54 (01) : 59 - 69
  • [6] Delivery of CRISPR/Cas9 for therapeutic genome editing
    Xu, Xiaojie
    Wan, Tao
    Xin, Huhu
    Li, Da
    Pan, Hongming
    Wu, Jun
    Ping, Yuan
    JOURNAL OF GENE MEDICINE, 2019, 21 (07)
  • [7] Systems of Delivery of CRISPR/Cas9 Ribonucleoprotein Complexes for Genome Editing
    R. N. Amirkhanov
    G. A. Stepanov
    Russian Journal of Bioorganic Chemistry, 2019, 45 : 431 - 437
  • [8] CRISPR/CAS9 GENOME EDITING FOR NEURODEGENERATIVE DISEASES
    Nojadeh, Jafar Nouri
    Eryilmaz, Nur Seren Bildiren
    Erguder, Berrin Imge
    EXCLI JOURNAL, 2023, 22 : 567 - 582
  • [9] A glance at genome editing with CRISPR–Cas9 technology
    Antara Barman
    Bornali Deb
    Supriyo Chakraborty
    Current Genetics, 2020, 66 : 447 - 462
  • [10] Efficient genome editing using CRISPR/Cas9 ribonucleoprotein approach in cultured Medaka fish cells
    Liu, Qizhi
    Yuan, Yongming
    Zhu, Feng
    Hong, Yunhan
    Ge, Ruowen
    BIOLOGY OPEN, 2018, 7 (08):