CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells

被引:34
作者
Bloomer, Hanan [1 ,2 ,3 ]
Khirallah, Jennifer [1 ]
Li, Yamin [1 ]
Xu, Qiaobing [1 ]
机构
[1] Tufts Univ, Dept Biomed Engn, Medford, MA 02155 USA
[2] Tufts Univ, Sch Med, Boston, MA 02111 USA
[3] Tufts Univ, Grad Sch Biomed Sci, Boston, MA 02111 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
CRISPR; Cas9; Drug delivery systems; RNP; Gene therapy; Genome editing; Epigenome editing; HUMAN HEMATOPOIETIC STEM; INDUCIBLE CRISPR-CAS9 SYSTEM; HIGHLY EFFICIENT; GENE-THERAPY; NANOPARTICLE DELIVERY; LIPID NANOPARTICLES; CAS9; PROTEIN; OFF-TARGET; T-CELLS; DRUG-DELIVERY;
D O I
10.1016/j.addr.2021.114087
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system has revolutionized the ability to edit the mammalian genome, providing a platform for the correction of pathogenic mutations and further investigation into gene function. CRISPR reagents can be delivered into the cell as DNA, RNA, or pre-formed ribonucleoproteins (RNPs). RNPs offer numerous advantages over other delivery approaches due to their ability to rapidly target genomic sites and quickly degrade thereafter. Here, we review the production steps and delivery methods for Cas9 RNPs. Additionally, we discuss how RNPs enhance genome and epigenome editing efficiencies, reduce off-target editing activity, and minimize cellular toxicity in clinically relevant mammalian cell types. We include details on a broad range of editing approaches, including novel base and prime editing techniques. Finally, we summarize key challenges for the use of RNPs, and propose future perspectives on the field.(c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 245 条
[1]   The CRISPR tool kit for genome editing and beyond [J].
Adli, Mazhar .
NATURE COMMUNICATIONS, 2018, 9
[2]   Highly efficient CRISPR-Cas9-mediated gene knockout in primary human B cells for functional genetic studies of Epstein-Barr virus infection [J].
Akidil, Ezgi ;
Albanese, Manuel ;
Buschle, Alexander ;
Ruhle, Adrian ;
Pich, Dagmar ;
Keppler, Oliver T. ;
Hammerschmidt, Wolfgang .
PLOS PATHOGENS, 2021, 17 (04)
[3]   Electroporation and genetic supply of Cas9 increase the generation efficiency of CRISPR/Cas9 knock-in alleles in C57BL/6J mouse zygotes [J].
Alghadban, Samy ;
Bouchareb, Amine ;
Hinch, Robert ;
Hernandez-Pliego, Polinka ;
Biggs, Daniel ;
Preece, Chris ;
Davies, Benjamin .
SCIENTIFIC REPORTS, 2020, 10 (01)
[4]   Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors [J].
Anzalone, Andrew V. ;
Koblan, Luke W. ;
Liu, David R. .
NATURE BIOTECHNOLOGY, 2020, 38 (07) :824-844
[5]   Search-and-replace genome editing without double-strand breaks or donor DNA [J].
Anzalone, Andrew V. ;
Randolph, Peyton B. ;
Davis, Jessie R. ;
Sousa, Alexander A. ;
Koblan, Luke W. ;
Levy, Jonathan M. ;
Chen, Peter J. ;
Wilson, Christopher ;
Newby, Gregory A. ;
Raguram, Aditya ;
Liu, David R. .
NATURE, 2019, 576 (7785) :149-+
[6]   Gold nanoparticles: opportunities and challenges in nanomedicine [J].
Arvizo, Rochelle ;
Bhattacharya, Resham ;
Mukherjee, Priyabrata .
EXPERT OPINION ON DRUG DELIVERY, 2010, 7 (06) :753-763
[7]   Delivery Approaches for Therapeutic Genome Editing and Challenges [J].
Ates, Ilayda ;
Rathbone, Tanner ;
Stuart, Callie ;
Bridges, P. Hudson ;
Cottle, Renee N. .
GENES, 2020, 11 (10) :1-32
[8]   CRISPR/Cas9 genome editing in human hematopoietic stem cells [J].
Bak, Rasmus O. ;
Dever, Daniel P. ;
Porteus, Matthew H. .
NATURE PROTOCOLS, 2018, 13 (02) :358-376
[9]  
Baker PJ, 2018, METHODS MOL BIOL, V1714, P41, DOI 10.1007/978-1-4939-7519-8_3
[10]   Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery [J].
Battaglia, Luigi ;
Gallarate, Marina .
EXPERT OPINION ON DRUG DELIVERY, 2012, 9 (05) :497-508