Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production

被引:143
作者
Soltani, R. [1 ]
Rosen, M. A. [1 ]
Dincer, I. [1 ]
机构
[1] Univ Ontario Inst Technol, Fac Engn & Appl Sci, Oshawa, ON L1H 7K4, Canada
关键词
Steam methane reforming; Hydrogen production; CO2; emission; capture; Oxygen enrichment; GAS; PSA;
D O I
10.1016/j.ijhydene.2014.09.161
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Steam methane reforming (SMR) is currently the main hydrogen production process in industry, but it has high emissions of CO2, at almost 7 kg CO2/kg H-2 on average, and is responsible for about 3% of global industrial sector CO2 emissions. Here, the results are reported of an investigation of the effect of steam-to-carbon ratio (SIC) on CO2 capture criteria from various locations in the process, i.e. synthesis gas stream (location 1), pressure swing adsorber (PSA) tail gas (location 2), and furnace flue gases (location 3). The CO2 capture criteria considered in this study are CO2 partial pressure, CO2 concentration, and CO2 mass ratio compared to the final exhaust stream, which is furnace flue gases. The CO2 capture number (N-cc) is proposed as measure of capture favourability, defined as the product of the three above capture criteria. A weighting of unity is used for each criterion. The best S/C ratio, in terms of providing better capture option, is determined. CO2 removal from synthesis gas after the shift unit is found to be the best location for CO2 capture due to its high partial pressure of CO2. However, furnace flue gases, containing almost 50% of the CO2 in produced in the process, are of great significance environmentally. Consequently, the effects of oxygen enrichment of the furnace feed are investigated, and it is found that this measure improves the CO2 capture conditions for lower S/C ratios. Consequently, for an S/C ratio of 2.5, CO2 capture from a flue gas stream is competitive with two other locations provided higher weighting factors are considered for the full presence of CO2 in the flue gases stream. Considering carbon removal from flue gases, the ratio of hydrogen production rate and Ncc increases with rising reformer temperature. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:20266 / 20275
页数:10
相关论文
共 50 条
  • [21] Numerical study of hydrogen production by the sorption-enhanced steam methane reforming process with online CO2 capture as operated in fluidized bed reactors
    Yuefa Wang
    Zhongxi Chao
    Hugo A. Jakobsen
    Clean Technologies and Environmental Policy, 2011, 13 : 559 - 565
  • [22] A framework for assessing economics of blue hydrogen production from steam methane reforming using carbon capture storage & utilisation
    Khan, Muhammad Haider Ali
    Daiyan, Rahman
    Neal, Peter
    Haque, Nawshad
    MacGill, Iain
    Amal, Rose
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (44) : 22685 - 22706
  • [23] Numerical Analysis of VPSA Technology Retrofitted to Steam Reforming Hydrogen Plants to Capture CO2 and Produce Blue H2
    Luberti, Mauro
    Brown, Alexander
    Balsamo, Marco
    Capocelli, Mauro
    ENERGIES, 2022, 15 (03)
  • [24] Hydrogen production through CO2 sorption-enhanced methane steam reforming: Comparison between different adsorbents
    Chen YuMing
    Zhao YongChun
    Zhang JunYing
    Zheng ChuGuang
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2011, 54 (11) : 2999 - 3008
  • [26] Thermodynamic analysis of autothermal steam and CO2 reforming of methane
    Li, Yunhua
    Wang, Yaquan
    Zhang, Xiangwen
    Mi, Zhentao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (10) : 2507 - 2514
  • [27] Calcium oxide for CO2 capture: Operational window and efficiency penalty in sorption-enhanced steam methane reforming
    Solieman, A. A. A.
    Dijkstra, J. W.
    Haije, W. G.
    Cobden, P. D.
    van den Brink, R. W.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2009, 3 (04) : 393 - 400
  • [28] Reforming of Blast Furnace Gas with Methane, Steam, and Lime for Syngas Production and CO2 Capture: A Thermodynamic Study
    Halmann, M.
    Steinfeld, A.
    MINERAL PROCESSING AND EXTRACTIVE METALLURGY REVIEW, 2015, 36 (01): : 7 - 12
  • [29] Syngas Production from CO2 Reforming and CO2-steam Reforming of Methane over Ni/Ce-SBA-15 Catalyst
    Tan, J. S.
    Danh, H. T.
    Singh, S.
    Truong, Q. D.
    Setiabudi, H. D.
    Vo, D-V N.
    29TH SYMPOSIUM OF MALAYSIAN CHEMICAL ENGINEERS (SOMCHE) 2016, 2017, 206
  • [30] Sorbent enhanced hydrogen production from steam gasification of coal integrated with CO2 capture
    Sedghkerdar, Mohammad Hashem
    Mostafavi, Ehsan
    Mahinpey, Nader
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (30) : 17001 - 17008