Satellite-Based Probabilistic Assessment of Soil Moisture Using C-Band Quad-Polarized RISAT1 Data

被引:0
作者
Pal, Manali [1 ]
Maity, Rajib [2 ,3 ]
Suman, Mayank [1 ]
Das, Sarit Kumar [4 ]
Patel, Parul [5 ]
Srivastava, Hari Shanker [6 ]
机构
[1] IIT Kharagpur, Sch Water Resources, Kharagpur 721302, W Bengal, India
[2] IIT Kharagpur, Dept Civil Engn, Kharagpur 721302, W Bengal, India
[3] Karlsruhe Inst Technol, Campus Alpin IMK IFU, Garmisch Partenkirchen, Germany
[4] IIT Roorkee, Roorkee 247667, Uttar Pradesh, India
[5] Indian Space Res Org, Ctr Space Applicat, Ahmadabad 380015, Gujarat, India
[6] Indian Space Res Org, Agr & Soils Dept, Indian Inst Remote Sensing, Dehra Dun 248001, India
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2017年 / 55卷 / 03期
关键词
Backscattering coefficients; copula; radar imaging satellite1 (RISAT1); supervised principal component analysis (SPCA); RADARSAT-1 SAR DATA; HYDROLOGICAL PARAMETERS; SURFACE-ROUGHNESS; RETRIEVAL; MODEL; BACKSCATTERING; STATISTICS; DEPENDENCE; SCATTERING; COPULAS;
D O I
10.1109/TGRS.2016.2623378
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper attempts to probabilistically estimate the surface soil moisture content (SMC) by using the synthetic aperture radar data provided by radar imaging satellite1. The novelty of this paper lies in: 1) developing a combined index to understand the role of all the backscattering coefficients with different polarization and soil texture information in influencing the SMC; 2) using normalized incidence angles, which enables the model to be applicable for different incidence angles; and 3) determination of uncertainty range of the estimated SMC. The dimensionality problem, which is frequently observed in the multivariate analysis, is reduced in the development of the combined index by the use of supervised principal component analysis (SPCA). The SPCA also ensures the maximum attainable association between the developed combined index and surface SMC above wilting point (WP). The association between the combined index and the surface SMC above WP is modeled through joint probability distribution by using the Frank copula. The model is developed and validated with the field soil moisture values over 334 monitoring points within the study area. The outcomes obtained by applying the proposed model indicate an encouraging potential of the model to be applied for bareland and vegetated land (< 30 cm height).
引用
收藏
页码:1351 / 1362
页数:12
相关论文
共 45 条
[21]   Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications [J].
Kornelsen, Kurt C. ;
Coulibaly, Paulin .
JOURNAL OF HYDROLOGY, 2013, 476 :460-489
[22]  
Krause P., 2005, Advances in Geosciences, V5, P89, DOI [10.5194/adgeo-5-89-2005, DOI 10.5194/ADGEO-5-89-2005]
[23]   The SIR-C/X-SAR experiment on Montespertoli: sensitivity to hydrological parameters [J].
Macelloni, G ;
Paloscia, S ;
Pampaloni, P ;
Sigismondi, S ;
De Matthaeis, P ;
Ferrazzoli, P ;
Schiavon, G ;
Solimini, D .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1999, 20 (13) :2597-2612
[24]   Probabilistic prediction of hydroclimatic variables with nonparametric quantification of uncertainty [J].
Maity, Rajib ;
Kumar, D. Nagesh .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D14)
[25]   A comparison between soil roughness statistics used in surface scattering models derived from mechanical and laser profilers [J].
Mattia, F ;
Davidson, MWJ ;
Le Toan, T ;
D'Haese, CMF ;
Verhoest, NEC ;
Gatti, AM ;
Borgeaud, M .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (07) :1659-1671
[26]   Mapping Soil Moisture Using RADARSAT-2 Data and Local Autocorrelation Statistics [J].
Merzouki, Amine ;
McNairn, Heather ;
Pacheco, Anna .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2011, 4 (01) :128-137
[27]  
Mishra M. D., 2014, INT J ADV ENG RES SC, V1, P78
[28]  
Nelsen R. B., 2010, INTRO COPULAS, P269
[29]   Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave backscattering from bare soil surfaces [J].
Oh, Y ;
Sarabandi, K ;
Ulaby, FT .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (06) :1348-1355
[30]   The Contribution of Multitemporal SAR Data in Assessing Hydrological Parameters [J].
Paloscia, S. ;
Macelloni, G. ;
Pampaloni, P. ;
Santi, E. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2004, 1 (03) :201-205